Cray XT™ Series Programming
Environment User's Guide

S-2396-20

CRANY

© 2004-2007 Cray Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form unless permitted by
contract or by written permission of Cray Inc.

The gnulicinfo(7) man page contains the Open Source Software licenses (the “Licenses"). Your use of this software release constitutes
your acceptance of the License terms and conditions.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE
The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with Restricted
Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14
or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the
U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable.

Cray, LibSci, UNICOS and UNICOS/mk are federally registered trademarks and Active Manager, Cray Apprentice2,

Cray C++ Compiling System, Cray Fortran Compiler, Cray SeaStar, Cray SeaStar2, Cray SHMEM, Cray Threadstorm, Cray X1,
Cray X1E, Cray X2, Cray XD1, Cray XMT, Cray XT, Cray XT3, Cray XT4, CrayDoc, CRInform, Libsci, RapidArray, UNICOS/Ic,
and UNICOS/mp are trademarks of Cray Inc.

AMD is a trademark of Advanced Micro Devices, Inc. Copyrighted works of Sandia National Laboratories include: Catamount/QK,
Compute Processor Allocator (CPA), and xtshowmesh. DDN is a trademark of DataDirect Networks. FFTW is Copyright © 2003
Matteo Frigo, Copyright © 2003 Massachusetts Institute of Technology. GCC is a trademark of the Free Software Foundation, Inc.
Linux is a trademark of Linus Torvalds. Lustre was developed and is maintained by Cluster File Systems, Inc. under the GNU
General Public License. MySQL is a trademark of MySQL AB. Opteron is a trademark of Advanced Micro Devices, Inc. PathScale

is a trademark of PathScale, Inc. PBS Pro is a trademark of Altair Grid Technologies. PETSc, Copyright, 1995-2004 University of
Chicago. The Portland Group and PGl are trademarks of STMicroelectronics. SUSE is a trademark of SUSE LINUX Products
GmbH, a Novell business. TotalView is a trademark of TotalView Technologies, LLC. UNIX, the “X device,” X Window System,

and X/Open are trademarks of The Open Group in the United States and other countries. All other trademarks are the property

of their respective owners.

New Features

Cray XT™ Series Programming Environment User's Guide S—-2396-20

Cross compiler platform

Added support of a standalone, cross compiler machine for creating executables to be run on
Cray XT series systems (see Section 1.1, page 1).

ALPS Added support of ALPS (Application Level Placement Scheduler). ALPS is the application
launcher for CNL applications. For further information, see Section 1.2, page 1.

Create node lists by compute node attributes

Added support of the cnsel ect command. You can use cnsel ect to get a candidate list
of compute nodes based on node attributes you specify. You can then use this list to launch
applications on compute nodes with those characteristics. For further information see Section
1.2, page 1.

Target architecture

The target architecture (CNL or Catamount) is set automatically at log in. For further
information, see Section 2.2, page 9.

IRT Added IRT (Iterative Refinement Toolkit) to Cray XT-LibSci. You can use IRT as an efficient
alternative to standard LAPACK or ScaLAPACK linear equation solvers. For further
information, see Section 3.2, page 13.

ACML changes

The ACML module is no longer loaded as part of the default Pr gEnv environment. For
further information, see Section 3.3, page 16.

PETSc Added support of PETSc (Portable, Extensible Toolkit for Scientific Computation). For further
information, see Section 3.5, page 18.

OpenMP Added support of OpenMP for PGI, PathScale, and GCC applications that are run on CNL
compute nodes. For further information, see Section 3.8, page 22.

CNL Added support of CNL. CNL is a compute node operating system; sites can use it as an
alternative to Catamount. For further information, see Chapter 4, page 23.

Unsupported PGI compiler command options

Added note that the PGI - npr of =npi , - Mpi , and - Mscal apack options are not supported
on Cray XT series systems (see Section 4.1.1.5, page 25).

Suppressing vectorization

Documented methods of suppressing vectorization in PGI applications (see Section 4.1.1.6,
page 25).

Lustre required for CNL applications
In CNL, only 1/0 to Lustre file systems is supported (see Section 4.2.2, page 27.
Resolving copy-on-write problems

Modified the Portals kernel to perform a partial copy of pages when a process forks a child.
The standard Linux f or k() copy-on-write process can adversely affect Portals data transfers
(see Section 4.2.11, page 29).

Creating CNL or Catamount executables

Added modules that enable you to create CNL or Catamount executables, regardless of the
operating system running on the compute nodes. For further information, see Section 5.1,
page 39.

PGI compilers

Documented PGI Cluster Development Kit (CDK) options not supported on Cray XT series
systems. For further information, see Section 5.2.1, page 40.

GNU Fortran 95 compiler

Added support of the GNU Fortran 95 compiler. For further information, see Section 5.2.2,
page 42.

PathScale compilers

Added support of the PathScale C, C++, and Fortran compilers. For further information,
see Section 5.2.3, page 43.

Methods for getting node status

Added the xt procadni n - Acommand, which generates a report showing node attributes.
Also enhanced the xt shownesh and xt showcabs reports. For further information, see
Chapter 6, page 47.

PBS Pro - | resource_type options

Documented changes in PBS Pro resource-type specifications (such as - | nmppwi dt h
replacing - | si ze (see Section 9.2, page 68).

Trace reports about memory allocation and deallocation

Added the -t racenal | oc option to the yod command to generate trace diagnostics for
mal | oc() and free() calls (see Section 10.1, page 73).

CrayPat sampling
Added support of CrayPat sampling (asynchronous) experiments (see Section 11.2.1, page 86).
Cray Apprentice2 desktop

Added support of Cray Apprentice2 running on a standalone Linux based machine (see
Section 11.3, page 88).

Rank placement method for CNL applications

Added support of the yod placement method (rank-sequential order) for CNL applications
(see Section 12.2.2, page 93).

Record of Revision

Version

1.0

1.0

11

1.2

13

14

15

15

2.0

2.0

S-2396-20

Description

December 2004
Draft documentation to support Cray XT3 early-production systems.

March 2005
Draft documentation to support Cray XT3 limited-availability systems.

June 2005
Supports Cray XT3 systems running the Cray XT3 Programming Environment 1.1
and UNICOS/Ic 1.1 releases.

August 2005
Supports Cray XT3 systems running the Cray XT3 Programming Environment 1.2
and UNICOS/Ic 1.2 releases.

November 2005
Supports Cray XT3 systems running the Cray XT3 Programming Environment 1.3
and UNICOS/Ic 1.3 releases.

April 2006
Supports Cray XT3 systems running the Cray XT3 Programming Environment 1.4
and UNICOS/Ic 1.4 releases.

August 2006
Supports limited availability (LA) release of Cray XT series systems running the
Cray XT series Programming Environment 1.5 and UNICOS/Ic1.5 releases.

November 2006
Supports general availability (GA) release of Cray XT series systems running the
Cray XT series Programming Environment 1.5 and UNICOS/Ic 1.5 releases.

June 2007
Supports limited availability (LA) release of Cray XT series systems running the
Cray XT series Programming Environment 2.0 and UNICOS/Ic 2.0 releases.

October 2007
Supports general availability (GA) release of Cray XT series systems running the
Cray XT series Programming Environment 2.0 and UNICOS/Ic 2.0 releases.

Contents

Preface

Accessing Product Documentation
Conventions

Reader Comments

Cray User Group

Introduction [1]
The Cray XT Series System Environment
The Cray XT Series Programming Environment

Documentation Included with This Release

Setting Up the User Environment [2]
Setting Up a Secure Shell
RSA Authentication with a Passphrase
RSA Authentication without a Passphrase
Using Modules
Modifying the PATH Variable

Lustre File System

Libraries and APIs [3]
C Language Run Time Library
Cray Scientific Library
BLAS and LAPACK
ScaLAPACK and BLACS

Example 1: Running a ScaLAPACK application
Example 2. Running an ScaLAPACK hybrid application

Iterative Refinement Toolkit

S-2396-20

Page

xi
xi
xii
xiii

Xiii

N =

© © 00 N

11
11

13
13
13
13
14
14
15
15

Cray XT™ Series Programming Environment User's Guide

SuperLU
AMD Core Math Library
FFTW Libraries
PETSc Library
Cray MPICH2 Message Passing Library
Cray SHMEM Library
OpenMP Library

Programming Considerations [4]
General Programming Considerations
PGI Compilers
Default MPICH2 and SHMEM Libraries
Unsupported C++ Header Files
Restrictions on Large Data Objects
The FORTRAN STOP Message
Unsupported Compiler Command Options
Suppressing Vectorization
PGI Debugger
PathScale Fortran Compiler
Little-endian Support
Portals Message Size Limit
Shared Libraries
CNL Programming Considerations
CNL glibc Functions
1/0 Support
External Connectivity
Timing Functions
Signal Support
Core Files
Page Size
Resource Limits

Page

16
16
17
18
18
20
22

23
23
23
23
24
24
24
25
25
25
25
26
26
26
26
26
27
28
28
28
29
29
29

S-2396-20

Contents

Page

One Application Per Node Limitation Ce e 29
Parallel Programming Models 29
Modified Copy-on-write Process 29
Catamount Programming Considerations C e 30
Catamount glibc Functions L L. 30
1/0 Support C e e e 31
Improving Fortran 1/0 Performance 32
Improving C++ I/0 Performance 32
Improving st di o Performance C e 33
Improving Large File, Sequential 1/0 Performance 33
Using Stride 1/0 Functions to Improve Performance Ce e 34
Reducing Memory Fragmentation 34
External Connectivity C e 35
Timing Functions C s 35
Signal Support s s 36
CoreFiles oL 36
Page Size C e e e e 37
Resource Limits Ce e e e e e 37
Parallel Programming Models 37
Compiler Overview [5] 39
Setting Your Target Architecture 39
Using Compilers Lo 40
Using PGI Compilers Ce e 40
Using GNU Compilers 42
Using PathScale Compilers 43
Getting Compute Node Status [6] 47
Running CNL Applications [7] 53
apr un Command C e e e 53
apstat Command L L e 55

S-2396-20 v

Cray XT™ Series Programming Environment User's Guide

Page

cnsel ect Command C e e 55
Memory Available to CNL Applications C e 56
Launching an MPMD Application C e e 57
Managing Compute Node Processors from an MPI Program Ce e 57
Input and Output Modes under aprun 58
Signal Handling under apr un Ce e e 58
Running Catamount Applications [8] 59
yod Command e 59
cnsel ect Command C e e e 60
Memory Available to Catamount Applications 61
Launching an MPMD Application Ce e e 62
Managing Compute Node Processors from an MPI Program Ce e 64
Inputand Out Modesunderyod Lo 64
Signal Handling under yod C e 64
Associating a Project or Task with a Job Launch C e 65
Using PBS Pro [9] 67
Creating Job Scriptso 67
Submitting Batch Jobs C e e e 68
Using apr un with gsub C e e e 68
Using yod with gsub e 69
Terminating Failing Processes in an MPI Program 69
Getting Jobs Status Lo 70
Removing a Job from the Queue L ... L L. 71
Debugging an Application [10] 73
Troubleshooting Catamount Application Failures 73
Using the TotalView Debugger C s e 74
Debugging an Applicationo 74
Debugging a Core File Ce e e 77
Attaching to a Running Process Ce e e 78

Vi S-2396-20

Contents

Page

Altering Standard 1/0 Ce e e 79
TotalView Limitations for Cray XT Series Systems 81
Using the GNU gdb Debugger C e e 81
Performance Analysis [11] 83
Using the Performance API C e e 83
Using the High-level PAPI Interface Ce e 83
Using the Low-level PAPI Interface Ce e 84
Using the Cray Performance AnalysisTool 84
Tracing and Sampling Experiments C e s 86
Using Cray Apprentice2 C e e 88
Optimization [12] 91
Using Compiler Optimization Options Ce e 91
Optimizing Applications Running on Dual-core Processors 92
MPI and SHMEM Applications Running under Catamount 92
MPI and SHMEM Applications RunningunderCNL 93
Example CNL Applications [13] 95
Example 3: Basics of running a CNL application e 95
Example 4: Basics of running an MPI application e 96
Example 5: Running an MPI work distribution program Ce e 98
Example 6: Combining results from all processorsusingMPI 100
Example 7: Using the Cray shnmem put function Ce e 102
Example 8: Using the Cray shnmrem get function Ce e 104
Example 9: Turning off the PGI FORTRAN STOPmessage 105
Example 10: Running an MP1/OpenMP program e 106
Example 11: Using a PBS Pro job script Ce e 107
Example 12: Running an MPI program under PBSPro 108
Example 13: Running an MPI_REDUCE program under PBS Pro Ce 109
Example 14: Using a script to create and run a batch job Ce e 110
Example 15: Running multiple sequential applications 111

S-2396-20 vii

Cray XT™ Series Programming Environment User's Guide

Example 16:
Example 17:
Example 18:
Example 19:
Example 20:

Running multiple parallel applications
Using the high-level PAPI interface
Using the low-level PAPI interface
Using basic CrayPat functions

Using hardware performance counters

Example Catamount Applications [14]

Example 21:
Example 22:
Example 23:
Example 24:
Example 25:
Example 26:
Example 27:
Example 28:
Example 29:
Example 30:
Example 31:
Example 32:
Example 33:
Example 34:
Example 35:
Example 36:
Example 37:
Example 38:
Example 39:
Example 40:
Example 41:
Example 42:

viii

Basics of running a Catamount application
Basics of running an MPI application

Running an MPI work distribution program
Combining results from all processors using MPI
Using the Cray shnmem put function

Using the Cray shnmem get function
Turning off the PGl FORTRAN STOP message
Using dcl ock() to calculate elapsed time
Specifying a buffer for 1/0

Changing default buffer size for 1/0 to file streams
Improving performance of st dout

Using a PBS Pro job script

Running an MPI program under PBS Pro
Running an MPI_REDUCE program under PBS Pro
Using a script to create and run a batch job
Running multiple sequential applications
Running multiple parallel applications

Using xt gdb to debug a program

Using the high-level PAPI interface

Using the low-level PAPI interface

Using basic CrayPat functions

Using hardware performance counters

Page

113
114
115
117
124

133
133
134
136
137
139
141
142
143
144
145
147
148
149
149
151
152
153
154
155
156
158
164

S-2396-20

Contents

Page
Appendix A glibc Functions Supported in CNL 181
Appendix B glibc Functions Supported in Catamount 187
Appendix C PAPI Hardware Counter Presets 193
Appendix D MPI Error Messages 199
Appendix E ALPS Error Messages 201
Appendix F yod Error Messages 203
Glossary 207
Index 209
Figures
Figure1l. TotalView RootWindow 75
Figure 2. TotalView Process Window 76
Figure 3. Debugging a Core File C e 77
Figure 4. AttachingtoaRunningProcess 78
Figure5. Altering Standard 170 e s 80
Figure 6. Cray Apprentice2 Function Display Ce s 89
Tables
Table 1. Manuals and Man Pages Included with ThisRelease 4
Table 2. set vbuf 3f () Arguments . 32
Table 3. PGI Compiler Commands 41
Table 4. GNU Compiler Commands C e s 42
Table 5. PathScale Compiler Commands 44
Table 6. aprunversusqsub Options 68
Table 7. yodversusqsub Options 69
Table8. RPCstoyod s 73
Table 9. Supported glibc Functionsfor CNL 181

S-2396-20 iX

Cray XT™ Series Programming Environment User's Guide

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.

Supported glibc Functions for Catamount
PAPI Presets

MPI Error Messages

ALPS Error Messages

yod Error Messages

Page

187
193
199
201
203

S-2396-20

Preface

The information in this preface is common to Cray documentation provided with
this software release.

Accessing Product Documentation

With each software release, Cray provides books and man pages, and in
some cases, third-party documentation. These documents are provided in the
following ways:

CrayDoc The Cray documentation delivery system that allows you to
quickly access and search Cray books, man pages, and in some
cases, third-party documentation. Access this HTML and PDF
documentation via CrayDoc at the following locations:

= The local network location defined by your system
administrator

= The CrayDoc public website: docs. cray. com

Man pages Access man pages by entering the man command followed by the
name of the man page. For more information about man pages,
see the man(1) man page by entering:

% man man
Third-party documentation

Access third-party documentation not provided through
CrayDoc according to the information provided with the
product.

S-2396-20 Xi

http://docs.cray.com/

Cray XT™ Series Programming Environment User's Guide

Conventions

These conventions are used throughout Cray documentation:

Convention

Meaning

conmand

variable

user i nput

[]

nane(N)

Xii

This fixed-space font denotes literal items, such as file
names, pathnames, man page names, command names, and
programming language elements.

Italic typeface indicates an element that you will replace with a
specific value. For instance, you may replace filename with the
name dat af i | e in your program. It also denotes a word or
concept being defined.

This bold, fixed-space font denotes literal items that the user
enters in interactive sessions. Output is shown in nonbold,
fixed-space font.

Brackets enclose optional portions of a syntax representation for
a command, library routine, system call, and so on.

Ellipses indicate that a preceding element can be repeated.

Denotes man pages that provide system and programming
reference information. Each man page is referred to by its name
followed by a section number in parentheses.

Enter:
% man nman

to see the meaning of each section number for your particular
system.

S-2396-20

Preface

Reader Comments

Cray User Group

S-2396-20

Contact us with any comments that will help us to improve the accuracy and
usability of this document. Be sure to include the title and number of the
document with your comments. We value your comments and will respond to
them promptly. Contact us in any of the following ways:

E-mail:
docs@ray. com

Telephone (inside U.S., Canada):
1-800-950-2729 (Cray Customer Support Center)

Telephone (outside U.S., Canada):
+1-715-726-4993 (Cray Customer Support Center)

Mail:

Customer Documentation

Cray Inc.

1340 Mendota Heights Road
Mendota Heights, MN 55120-1128
USA

The Cray User Group (CUG) is an independent, volunteer-organized
international corporation of member organizations that own or use Cray Inc.
computer systems. CUG facilitates information exchange among users of Cray
systems through technical papers, platform-specific e-mail lists, workshops, and
conferences. CUG memberships are by site and include a significant percentage
of Cray computer installations worldwide. For more information, contact your
Cray site analyst or visit the CUG website at ww. cug. or g.

Xiii

file:///tmp/mytmp.11436/mailto:docs%40cray.com
http://www.cug.org

Introduction [1]

This guide describes the Cray XT series Programming Environment products and
related application development tools. In addition, it includes procedures and
examples that show you how to set up your user environment and build and

run optimized applications. The intended audience is application programmers
and users of Cray XT series systems. Prerequisite knowledge is a familiarity
with the topics in the Cray XT Series System Overview. For information about
managing system resources, system administrators can see the Cray XT Series
System Management manual.

Note: Functionality marked as deferred in this documentation is planned to be
implemented in a later release.

1.1 The Cray XT Series System Environment

The system on which you run your Cray XT series applications is an integrated
set of Cray XT series compute node and service node components. You log in
either to a service node or a standalone cross-compiler machine and use the
Cray XT series Programming Environment and related products to create your
executables. You run your executables on Cray XT series compute nodes.

The operating system is UNICOS/Ic; it has compute node and service node
components. Compute nodes run either the CNL or the Catamount operating
system. Service nodes run SUSE LINUX. For details about the differences
between CNL and Catamount, see Chapter 4, page 23.

1.2 The Cray XT Series Programming Environment

S-2396-20

The Cray XT series Programming Environment includes the following products
and services:

= PGI compilers for C, C++, and Fortran (see Chapter 5, page 39).

= GNU compilers for C, C++, and Fortran (see Chapter 5, page 39).

= PathScale compilers for C, C++, and Fortran (see Section 5.2.3, page 43).
= Parallel programming models:

— Cray MPICHZ2, the Message Passing Interface routines (see Section 3.6,
page 18).

Cray XT™ Series Programming Environment User's Guide

Cray SHMEM shared memory access routines (see Section 3.7, page 20).

OpenMP shared memory model routines, Fortran directives, and C and
C++ pragmas (see Section 3.8, page 22). OpenMP is not supported for
applications running under Catamount.

« Cray XT-LibSci scientific library, which includes;

Basic Linear Algebra Subprograms (BLAS)

Linear Algebra (LAPACK) routines

ScaLAPACK routines

Basic Linear Algebra Communication Subprograms (BLACS)
Iterative Refinement Toolkit (IRT)

SuperLU routines

For further information about Cray XT-LibSci, see Section 3.2, page 13.

= AMD Core Math Library (ACML), which includes:

Fast Fourier Transform (FFT) routines
Math transcendental library routines
Random number generators

GNU Fortran libraries

For further information about ACML, see Section 3.3, page 16.

= PETSc (Portable, Extensible Toolkit for Scientific Computation). For further
information, see Section 3.5, page 18.

e FFTW (see Section 3.4, page 17)

= A ssubset of the glibc GNU C Library routines for compute node applications
(see Section 3.1, page 13).

= The Performance API (PAPI) (see Section 11.1, page 83).

S-2396-20

Introduction [1]

In addition to Programming Environment products, the Cray XT series system
provides these application development products and functions:

= The Application Level Placement Scheduler (ALPS) utility for launching
applications on CNL compute nodes (apr un command), killing processes
(apki I' I command), and getting status about applications (apst at
command). See Chapter 7, page 53 for a description of apr un and Appendix
E, page 201 for a description of common ALPS error messages.

= The yod command for launching applications on Catamount compute nodes
(see Chapter 8, page 59).

= The cnsel ect command for generating a candidate list of compute nodes
based on user-specified selection criteria; you can use this liston aprun -L
nodes or yod -1i st processor-list commands to launch an application on
compute nodes with those characteristics (see the cnsel ect (1) man page).

= Lustre parallel file system (see Section 2.4, page 11).

e The xt procadm n - Acommand for generating a report showing the
attributes of the compute nodes (see Chapter 6, page 47).

= The xt shownesh and xt showcabs commands for generating reports
showing the status of compute nodes (see Chapter 6, page 47).

The following optional products are available for Cray XT series systems:
= PBS Pro batch processing system (see Chapter 9, page 67).

Note: If your site has installed another batch system, please contact the
appropriate vendor for the necessary installation, configuration, and
administration information. For example, contact Cluster Resources, Inc.
(http://ww. cl ust erresour ces. cont) for documentation specific to
Moab products.

= TotalView debugger (see Section 10.2, page 74). The TotalView
debugger is available from TotalView Technologies, LLC
(http://ww. total viewt ech. conf Docunent ati on/).

= GNU debugger (see Section 10.3, page 81).
= CrayPat performance analysis tools (see Section 11.2, page 84).

= Cray Apprentice2 performance visualization tool (see Section 11.3, page 88).

S-2396-20 3

http://www.clusterresources.com/
http://www.totalviewtech.com/Documentation/

Cray XT™ Series Programming Environment User's Guide

1.3 Documentation Included with This Release

Table 1 lists the manuals and man pages that are provided with this release. All
manuals are provided as PDF files, and some are also available as HTML files.
You can view the manuals and man pages through the CrayDoc interface or
move the files to another location, such as your desktop.

Note: You can use the Cray XT Series System Documentation Site Map on
CrayDoc to link to all Cray manuals and man pages included with this release.

Table 1. Manuals and Man Pages Included with This Release

Cray XT Series Programming Environment User's Guide (this manual)
Cray XT Series Programming Environment man pages

Cray XT Series Release Overview

Cray XT Series System Overview

PGI User's Guide

PGI Fortran Reference

PGI Tools Guide

Cray XT Series Programming Environments Installation Guide manual
Modules software package man pages

Cray MPICH2 man pages (read i nt r o_npi (3) first)

Cray SHMEM man pages (read i nt r o_shnem(3) first)

AMD Core Math Library (ACML) manual

Cray XT-LibSci man pages(read i ntro_1l i bsci (3s) first)

Iterative Refinement Toolkit man pages(read i nt ro_i rt (3) first)
SuperLU Users® Guide

FFTmanpages(intro _fft(3),intro_fftw2(3),intro_fftw3(3))
PBS Pro Release Overview, Installation Guide, and Administration Addendum
PBS Pro Quick Start Guide

PBS Pro User Guide

PBS Pro External Reference Specification

TotalView t ot al vi ewm(1) man page

4 S-2396-20

Introduction [1]

S-2396-20

Performance API (PAPI) man pages
Using Cray Performance Analysis Tools manual

CrayPat and Cray Apprentice2 man pages (read cr aypat (1) and app2(1) first)

Additional sources of information:

e PGI manuals at ht t p: / / ww. pgr oup. comand the pgcc(1), pgCC(1),
pgf 95(1), and pgf 77(1) man pages available through the nan command.

= Using the GNU Compiler Collection (GCC) manual at htt p: // gcc. gnu. or g/
and the gcc(1), g++(1), gf ort ran(1), and g77(1) man pages available
through the man command.

= QLogic PathScale Compiler Suite User's Guide at
http://ww. pat hscal e. conf docs/ ht M and the
pat hcc(1), pat hCC(1), pat hf 95(1), and eko(7) man pages available through
the man command.

e MPICH2 documents athtt p: //www uni x. nts. anl . gov/ npi / npi ch2/
and ht t p: / / www. npi - f or um or g.

e OpenMP documents at htt p: / / www. opennp. or g.

= The ScaLAPACK Users" Guide at
http://ww. netlib. org/scal apack/ sl ug/.

e SuperLU documentsathttp://crd. | bl.gov/~xi aoye/ Super LU .

e PETSc documents at
http://ww uni x. nts. anl . gov/ pet sc/ pet sc-as.

e FFTW documentsathttp://ww. fftw org/.
e PAPI documentsathttp://icl.cs. utk.edul/ papi/.
= Lustre documentation (htt p: // manual . | ustre. org/).

= SUSE LINUX man pages available through the nan command.

http://www.pgroup.com
http://www.gcc.gnu.org
http://www.pathscale.com/docs/html
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.mpi-forum.org/docs/docs.html
http://www.openmp.org
http://www.netlib.org/scalapack/slug/
http://crd.lbl.gov/%7Exiaoye/SuperLU/
http://www-unix.mcs.anl.gov/petsc/petsc-as
http://www.fftw.org/
http://icl.cs.utk.edu/papi/
http://manual.lustre.org/

Cray XT™ Series Programming Environment User's Guide

6 S-2396-20

Setting Up the User Environment [2]

Configuring your user environment on a Cray XT series system is similar to
configuring a typical Linux workstation. However, there are steps specific
to Cray XT series systems that you must take before you begin developing
applications.

2.1 Setting Up a Secure Shell

S-2396-20

Cray XT series systems use ssh and ssh- enabled applications such as scp for
secure, password-free remote access to the login nodes.

Before you can use the ssh commands, you must generate an RSA authentication
key. The process for generating the key depends on the authentication method
you use. There are two methods of passwordless authentication: with or without
a passphrase. Although both methods are described here, you must use the latter
method to access the compute nodes through a script or when using a system
monitor command such as xt ps.

For more information about setting up and using a secure shell, see the ssh(1),
ssh- keygen(1), ssh-agent (1), ssh- add(1), and scp(1) man pages. For further
information about system monitor commands, see the Cray XT Series System
Management manual.

Cray XT™ Series Programming Environment User's Guide

2.1.1 RSA Authentication with a Passphrase
To enable ssh with a passphrase, complete the following steps.

1. Create a $HOVE/ . ssh directory and set permissions so that only the file's
owner can access them:

% nkdi r $HOVE/ . ssh

% chrod 700 $HOME/ . ssh
2. Generate the RSA keys by using the following command:
% ssh-keygen -t rsa
and follow the prompts. You will be asked to supply a passphrase.

3. The public key is stored in your $HOVE/ . ssh directory. Use the following
command to copy the key to your home directory on the remote host(s):

% scp $HOVE/ . ssh/ key filename. pub \

username@ystem name: . ssh/ aut hori zed_keys
Connect to the remote host by typing the following commands.
If you are using a C shell, use:

% eval " ssh-agent’

% ssh- add

If you are using a Bourne shell, use:
$ eval “ssh-agent -s°

$ ssh-add

Type your passphrase when prompted, followed by:

% ssh remote host name

8 S-2396-20

Setting Up the User Environment [2]

2.1.2 RSA Authentication without a Passphrase

2.2 Using Modules

S-2396-20

To enable ssh without a passphrase, complete the following steps.

1. Create a $HOVE/ . ssh directory and set permissions so that only the owner
of the file can access them:

% nkdi r $HOVE/ . ssh
% chrmod 700 $HOVE/ . ssh

2. Generate the RSA keys by typing the following command:
% ssh-keygen -t rsa -N""
and following the prompts.

3. The public key is stored in your $HOVE/ . ssh directory. Type the following
command to copy the key to your home directory on the remote host(s):

% scp $HOVE/ . ssh/ key filename. pub \
username@ystem name: . ssh/ aut hori zed_keys

Note: This step is not required if your home directory is shared.
4. Connect to the remote host by typing the following command:

% ssh remote host name

The Cray XT series system uses modules in the user environment to support
multiple versions of software, such as compilers, and to create integrated
software packages. As new versions of the supported software and associated
man pages become available, they are added automatically to the Programming
Environment, while earlier versions are retained to support legacy applications.
You can use the default version of an application or Modules system commands
to choose another version.

Cray XT™ Series Programming Environment User's Guide

10

The Pr gEnv module loads the Programming Environment and related product
modules. To load the default Pr gEnv module, use:

% nodul e | oad PrgEnv
To load specific compiler suite modules, use one of the following commands:

% nodul e | oad Pr gEnv- pgi
% nodul e | oad PrgEnv-gnu
% nodul e | oad PrgEnv-pat hscal e

The target environment module is automatically loaded at log in. If the compute
nodes are running CNL, the xt pe-t ar get - cnl module is automatically loaded.
If the compute nodes are running Catamount, the xt pe-t ar get - cat anmount
module is automatically loaded.

For some products, additional modules may have to be loaded. The chapters
addressing those products specify the module names and the conditions under
which they must be loaded.

Modules also provide a simple mechanism for updating certain environment
variables, such as PATH, MANPATH, and LD LI BRARY_PATH. In general, you
should make use of the modules system rather than embedding specific directory
paths into your startup files, makefiles, and scripts.

To find out what modules have been loaded, use:

The Base- opt s module is loaded by default. Base- opt s loads the OS modules
in a versioned set that is provided with the release package.

To get a list of all available modules, use:

% modul e avai |

To switch from one module to another, use:

% nmodul e swap swap_ out _module swap in module

For example, if you have been using the PGI compilers and want to use the GNU
compilers instead, use:

% nodul e swap PrgEnv-pgi PrgEnv-gnu

For further information about the Module utility, see the nodul e(1) and
nmodul ef i | e(4) man pages.

S-2396-20

Setting Up the User Environment [2]

2.3 Modifying the PATH Variable

You may need to modify the PATH variable for your environment. Do not
reinitialize the system-defined PATH. The following example shows how to
modify it for a specific purpose (in this case to add $HOVE/ bi n to the path).

If you are using csh, use:
% set path = ($path $HOWE bi n)
If you are using bash, use:

$ export $PATH=$PATH. $HOVE/ bi n

2.4 Lustre File System

% | fs df

uul D

ni d00011_nds_UUI D
ost0_UUI D
ost1_UU D
ost2_UU D

<sni p>

fil esystem sunmary:

S-2396-20

Lustre is the Cray XT file system for compute node applications. To use Lustre,
you must direct file operations to paths within a Lustre mount point. You can use
thedf -t lustreorlfs df command to locate Lustre mount points:

1K- bl ocks Used Avail able Use% Mounted on

1003524776 63414492 940110284 6% /1 us/ ni dOO011[MDT: 0]
1128979112 278021080 850958032 24% /1 us/ ni dO0011[OST: 0]
1128979112 254976940 874002172 22% /1 us/ ni dO0011[OST: 1]
1128979112 258597116 870381996 22% /1 us/ ni dOO011[OST: 2]

16934686680 4270985104 12663701576 25% /1 us/ ni d00011

If your environment has not been set up to use Lustre for 1/0, see your system
administrator. The Lustre 170 interface is transparent to the application
programmer; I/0 functions are handled by the Lustre client running on the
compute nodes.

If you want to create a file with a specific striping pattern, use the Lustre | f s
command. Lustre file systems include Object Storage Servers (OSSs). Each OSS
hosts two Object Storage Targets (OSTs), which transfer data objects that can be
striped across Redundant Array of Independent Disks (RAID) storage devices.

You may choose to create a file of multiple stripes if your application requires a
higher transmission rate to a single file than can be provided by a single OSS. You
may also need to stripe a file if a single OST does not have enough free space to
hold the entire file. For example, the command:

%I fs setstripe results2 1048576 1 4

11

Cray XT™ Series Programming Environment User's Guide

stripes file r esul t s2 on four OSTs, (starting with ost 1). The stripe size is
1048576 bytes.

For further information, see the | f s(1) man page.

12 S-2396-20

Libraries and APIs [3]

This chapter describes the libraries and APIs that are available to application
developers.

3.1 C Language Run Time Library

The Cray XT series supports subsets of the GNU C library, glibc, for CNL and
Catamount applications. For details on glibc for CNL, see Section 4.2.1, page 26
and Appendix A, page 181. For details on the Catamount port of glibc, see
Section 4.3.1, page 30 and Appendix B, page 187.

3.2 Cray Scientific Library

3.2.1 BLAS and LAPACK

S-2396-20

The Cray XT scientific library, XT-LibSci, includes Basic Linear Algebra
Subroutines (BLAS), linear algebra routines (LAPACK), parallel linear algebra
routines (ScaLAPACK), Basic Linear Algebra Communication Subprograms
(BLACS), the Iterative Refinement Toolkit (IRT), and the SuperLU sparse solver
routines.

For additional information about XT-LibSci routines, see the scientific libraries
man pages (read i ntro_| i bsci (3s) first).

The BLAS and LAPACK libraries include routines from the 64-bit | i bGot o
library from the University of Texas.

If you require a C interface to BLAS and LAPACK but want to use Cray XT-LibSci
BLAS or LAPACK routines, you must use the Fortran interfaces.

You can access the Fortran interfaces from a C program by adding an underscore
to the respective routine names and by passing arguments by reference (rather
than by value in the traditional way). For example, you can call the dget r f ()
function as follows:

dgetrf_(&uplo, &m &n, a, & da, ipiv, work, & work, & nfo);

Note: C programmers using the Fortran interface are advised that arrays are
required to be ordered in the Fortran column-major manner.

13

Cray XT™ Series Programming Environment User's Guide

3.2.2 ScaLAPACK and BLACS

14

ScaLAPACK is a distributed-memory, parallel linear algebra library. The
XT-LibSci version of ScaLAPACK is modified to work more efficiently on
Cray XT series compute nodes.

The BLACS library is a set of communication routines used by ScaLAPACK and
the user to set up a problem and handle the communications.

The ScaLAPACK and BLACS libraries can be used in MPI and SHMEM
applications. Cray XT-LibSci under CNL also supports hybrid MP1/ScaLAPACK
applications, which use threaded BLAS on a compute node and MPI between
nodes. To use ScaLAPACK in a hybrid application:

1. Adjust the process grid dimensions in ScaLAPACK to account for the
decrease in BLACS nodes.

2. Ensure that the number of BLACS processes required is equal to the number
of nodes required, not the number of cores.

3. Set GOTO_NUM THREADS to 2 in the PBS job script used to launch the job.
Example 1: Running a ScaLAPACK application

To run a ScaLAPACK application in regular mode (that is, 1 MPI process per
core) with 16 BLACS processes on a 4x4 computational grid, use the #PBS - |
nppwi dt h option to specify the number of processing elements needed (16) and
the #PBS -1 nppnppn option to specify the number of processing elements
per node (2).

#! /[usr/ bin/csh
#PBS -1 nppw dt h=16
#PBS -1 nppnppn=2

cd /1 us/ni do0007
aprun -n 16 ./a.out

S-2396-20

Libraries and APIs [3]

Example 2: Running an ScaLAPACK hybrid application

To run the same job using a hybrid application, first reduce the number of BLACS
processes from 16 to 8 (by specifying either a 2x4 or possibly a 4x2 computational
grid). The additional parallelism within a node is provided through use of the
threaded BLAS.

In the PBS script, only those tasks actually recognized are requested. So set
nppwi dt h equal to the number of nodes required (8) and nppnppn equal to the
number of PEs per node (1).

#! /usr/ bi n/csh

#PBS -1 nppwi dt h=8

#PBS -1 nppnppn=1

cd /1 us/ni do0007

set env GOTO_NUM THREADS 2
aprun -n 8 ./a.out

3.2.3 lterative Refinement Toolkit

S-2396-20

The Iterative Refinement Toolkit (IRT) is a library of factorization routines,
solvers, and tools that can be used to solve systems of linear equations more
efficiently than the full-precision solvers in Cray XT-LibSci or ACML.

IRT exploits the fact that single-precision solvers can be up to twice as fast as
double-precision solvers. IRT uses an iterative refinement process to obtain
solutions accurate to double precision.

15

Cray XT™ Series Programming Environment User's Guide

IRT provides two interfaces:

Benchmarking interface. The benchmarking interface routines replace the
high-level drivers of LAPACK and ScaLAPACK. The names of the benchmark
API routines are identical to their LAPACK or ScaLAPACK counterparts or
replace calls to successive factorization and solver routines. This allows you to
use the IRT process without modifying your application.

For example, the IRT dgesv() routine replaces either the LAPACK dgesv()
routine or the LAPACK dget rf () and dget rs() routines. To use the
benchmarking interface, set the | RT_USE_SCLVERS environment variable
to 1.

Note: Use this interface with caution; calls to the LAPACK LU, QR or
Cholesky routines are intercepted and IRT is used instead.

Expert interface. The expert interface routines give you greater control of the
iterative refinement process and provide details about the success or failure of
the process. The format of advanced API calls is:

call irt_ factorization-method data-type processing-mode(arguments)

3.2.4 SuperLU

suchas: call irt_po_real parall el (arguments).

For details about IRT, see the i nt ro_i rt (3) man page.

The SuperLU library routines solve large, sparse nonsymmetric systems of linear
equations. Cray XT-LibSci SuperLU provides only the distributed-memory
parallel version of SuperLU. The library is written in C but can be called from
programs written in either C or Fortran.

3.3 AMD Core Math Library

16

The AMD Core Math Library (ACML) module is no longer loaded as part of the
default PrgEnv environment. BLAS and LAPACK functionality is now provided
by Cray XT-LibSci (see Section 3.2.1, page 13). However, if you need ACML for

FFT functions, math functions, or random number generators, you can load the
library using the acm module:

% nodul e | oad acni

S-2396-20

Libraries and APIs [3]

3.4 FFTW Libraries

S-2396-20

ACML includes:
= A suite of Fast Fourier Transform (FFT) routines for real and complex data

= Fast scalar, vector, and array math transcendental library routines optimized
for high performance

= A comprehensive random number generator suite:
— Five base generators plus a user-defined generator
— 22 distribution generators
— Multiple-stream support

ACML's internal timing facility uses the cl ock() function. If you run an
application on compute nodes that uses the plan feature of FFTs, underlying
timings will be done using the native version of ¢l ock() . On Catamount,

cl ock() returns elapsed time. On CNL, cl ock() returns the sum of user and
system CPU times.

The Programming Environment includes versions 3.1.1 and 2.1.5 of the Fastest
Fourier Transform in the West (FFTW) library. FFTW is a C subroutine library
with Fortran interfaces for computing the discrete Fourier transform in one or
more dimensions, of arbitrary input size, and of both real and complex data (as
well as of even/odd data, such as the discrete cosine/sine transforms). The Fast
Fourier Transform algorithm is applied for many problem sizes.

To use the default FFTW library, use:
% modul e | oad fftw

To use the FFTW 3.1.1 library, use:

% modul e load fftw3.1.1

To use the FFTW 2.1.5 library, use:

% modul e 1 oad fftw 2.1.5

Distributed-memory parallel FFTs are available only in FFTW 2.1.5.

17

Cray XT™ Series Programming Environment User's Guide

3.5 PETSc Library

The FFTW 3.1.1 and FFTW 2.1.5 modules cannot be loaded at the same time.
You must first unload the other module, if already loaded, before loading the
desired one. For example, if you have loaded the FFTW 3.1.1 library and want to
use FFTW 2.1.5 instead, use:

% nodul e swap fftw3.1.1 fftw2.1.5

The Programming Environment supports the 2.3.3 release of the Portable,
Extensible Toolkit for Scientific Computation (PETSc) library. PETSc is an open
source library of sparse solvers. There are two PETSc modules:

= pet sc for real data
= petsc-conpl ex for complex data

To switch from the PETSc module for real data to the module for complex data,
use:

% nodul e swap petsc petsc-conpl ex

For details, see the i ntro_pet sc(3) man page and
htt p: // www uni x. nts. anl . gov/ pet sc/ pet sc-as/i ndex. htm .

3.6 Cray MPICH2 Message Passing Library

18

Cray MPICH2 implements the MPI-2 standard, except for support of spawn
functions. It also implements the MPI 1.2 standard, as documented by the MPI
Forum in the spring 1997 release of MPI: A Message Passing Interface Standard.

The Cray MPICH2 message-passing libraries are implemented on top of the
Portals low-level message-passing engine. The Portals interface is transparent to
the application programmer.

All Cray XT compilers support MPICH2 applications. There are two versions

of the MPICH2 library available for users of the PGI or PathScale Fortran
compilers. One version supports applications where the data size for the Fortran
default types integer, real, and logical is 32 bits, and the other version supports
applications where the data size is 64 bits. For further details, see Section 4.1.1.1,
page 23 and Section 4.1.3, page 25.

For examples showing how to compile, link, and run MPI applications, see
Chapter 13, page 95 and Chapter 14, page 133.

S-2396-20

http://www-unix.mcs.anl.gov/petsc/petsc-as/index.html

Libraries and APIs [3]

S-2396-20

Note: Programs that use MPI library routines for parallel control and
communication should call the MPI _Fi nal i ze() routine at the conclusion
of the program.

For a list of MPI error messages and suggested workarounds, see Appendix D,
page 199.

For information about MPI environment variables, see the i ntro_npi (3) man
page.

There are some limitations to Cray XT MPICH2 you should take into
consideration:

= There is a name conflict between st di 0. h and the MPI C++ binding
in relation to the names SEEK_SET, SEEK CUR, and SEEK _END. If your
application does not reference these names, you can work around this
conflict by using the compiler flag - DMPI CH_| GNORE_CXX_SEEK. If your
application does require these names, as defined by MPI, undefine the
names (#undef SEEK SET, for example) prior to the #i ncl ude "npi . h"
statement. Alternatively, if the application requires the st di 0. h naming,
your application should include the #i ncl ude " npi . h" statement before
the #i ncl ude <stdi o. h>or #i ncl ude <i ostreanp statement.

= The following process-creation functions are not supported and, if used,
generate aborts at run time:

- MPI_Close_port() and VPl _Qpen_port ()
- MPI _Conm accept ()
— ©MPI _Conm connect () and MPI _Conmm di sconnect ()
— MPI _Conmm spawn() and MPI _Conm spawn_nul ti pl e()
- MPI _Conm get _attr () with attribute MPI _UNI VERSE_SI ZE
— MPI _Conm get parent ()
- MPI _Lookup_nane()
— ©MPI _Publish_nane() and MPl _Unpubl i sh_nane()
e The MPI _LONG DOUBLE data type is not supported.

The behavior of the MPICH2 function MPI _Di ns_cr eat e() is not consistent
with the MPI standard. Therefore, Cray added a special npi _di ns_create
algorithm to the MPI library. This added function is enabled by default.

19

Cray XT™ Series Programming Environment User's Guide

3.7 Cray SHMEM Library

20

The Cray shared memory access (SHMEM) library is a set of logically shared,
distributed memory access routines. Cray SHMEM routines are similar to MPI
routines; they pass data between cooperating parallel processes. The Cray
SHMEM library is implemented on top of the Portals low-level message-passing
engine. The Portals interface is transparent to the application programmer.

All Cray XT compilers support SHMEM applications. There are two versions of
the SHMEM library available for users of the PGI or PathScale Fortran compilers.
One version supports applications where the data size for the Fortran default
types integer, real, and logical is 32 bits; the other version supports applications
where the size is 64 bits. For further details, see Section 4.1.1.1, page 23 and
Section 4.1.3, page 25.

Cray SHMEM routines can be used in programs that perform computations
in separate address spaces and that explicitly pass data by means of put and
get functions to and from different processing elements in the program. Cray
SHMEM routines can be called from Fortran, C, and C++ programs and used
either by themselves or with MPI functions.

Portals and the Cray SHMEM library support the following SHMEM atomic
memory operations:

= atomic swap

= atomic conditional swap

= atomic fetch and increment

= atomic fetch and add

= atomic lock

An operation is atomic if the steps cannot be interrupted and are done as a unit.

When running on Catamount, you can use the yod command line options

- st ack, - heap, and - shmemto control the size (in bytes) of the stack, private
heap, and symmetric heap, respectively. See the yod(1) man page for details. On
Catamount, SHMEM applications can use all available memory per node (total
memory minus memory for the kernel and the process control thread (PCT)).
SHMEM does not impose any restrictions on stack, heap, or symmetric heap
memory regions.

S-2396-20

Libraries and APIs [3]

When running on CNL, the environment variable

XT_LI NUX_SHMEM HEAP_SI ZE can be used to control the size (in

bytes) of the private heap. The size of the stack is limited by the value of
st acksi ze in a process' limits, if this is not unlimited. If this limit is set to
unl i m t ed, then the default size of the stack is 16 MB, unless the user sets
the environment variable XT_LI NUX_SHMEM STACK_SI ZE, which specifies
the desired size of the stack in bytes.

The environment variable XT_SYMVETRI C_HEAP_SI ZE can be used when
running on either Catamount or CNL to control the size (in bytes) of the
symmetric heap.

Note: To build, compile, and run Cray SHMEM applications, you need to call
start_pes(int npes) orshmem.nit() as the first Cray SHMEM call
and shnem finalize() asthe last Cray SHMEM call.

For examples showing how to compile, link, and run SHMEM applications, see
Chapter 13, page 95 and Chapter 14, page 133.

When using SHMEM functions, you should be aware of the following
performance issues:

S-2396-20

The performance of strided operations is poor. The Portals network protocol
stack on Cray XT series is optimized for block transfers. It does not support
efficient access of non-contiguous remote memory. Repackaging data into
contiguous blocks in the application and then calling a shmem put () or
shmem get () function will lead to better performance than calling strided
operations. You may want to try this option if your application uses strided
SHMEM operations.

The performance of atomic operations is poor because Cray XT series systems
do not provide hardware support for atomic memory operations. Atomic
memory operations should not be used for high fan-in synchronization
because the injection rate is much larger than the processing rate, leading to a
buildup of requests and, in turn, degraded performance.

Cray XT series systems do not support barrier operations in hardware
or firmware. The barrier functions are implemented in software and are
relatively slow. Cray recommends that you minimize the use of barriers.

Avoid the following type of constructs:

while (remval !'= 0) {
shnem get 64(& enval, & emflag, 1, pe);
}

21

Cray XT™ Series Programming Environment User's Guide

3.8 OpenMP Library

22

They can severely tax the Portals network protocol stack, particularly if many
processes are spinning on a variable at a single target process. If possible, use
other synchronization mechanisms that rely on spinning on local memory.

The Cray XT Series system supports version 2.5 of the OpenMP Application
Program Interface standard. OpenMP is a shared-memory parallel programming
model that application developers can use to create and distribute work using
threads. In addition to library routines, OpenMP provides Fortran directives, C
and C++ pragmas, and environment variables. The PGI, PathScale, and GNU
compilers support OpenMP.

To use OpenMP, you need to include the appropriate OpenMP option on the
compiler command line. The compiler command options are:

PGI - nMp=nonuma
PathScale -np
GCC - f opennp

You also need to set the OMP_NUM THREADS environment variable to the number
of threads in the team.

The number of processors hosting OpenMP threads at any given time is fixed at
program startup and specified by the apr un - d depth option (see Section 7.1,
page 53 for further information).

For an example showing how to compile, link, and run OpenMP applications, see
Example 10, page 106.

OpenMP applications can be used in hybrid OpenMP/MPI applications but may
not cross node boundaries. In OpenMP/MPI applications, MPI calls can be made
from master or sequential regions but not parallel regions. OpenMP is supported
on CNL but not Catamount.

For further information about launching OpenMP applications, see
the apr un(l) man page. For further information about OpenMP
functions, see the OpenMP website (htt p: / / www. opennp. or g), the
PGI website (htt p: // www. pgr oup. cont), the PathScale website
(ht t p: / / ww. pat hscal e. con), or the GNU OpenMP website
(htt p://gcc. gnu. or g/ proj ects/ gonp/).

S-2396-20

http://www.openmp.org
http://www.pgroup.com/
http://www.pathscale.com/
http://gcc.gnu.org/projects/gomp/

Programming Considerations [4]

The manuals and man pages for third-party and open source Cray XT series
Programming Environment products provide platform-independent descriptions
of product features. This chapter provides information specific to Cray XT
series systems that you should consider when using those products to develop
CNL or Catamount applications. The following sections describe general
programming considerations, Catamount-specific programming considerations,
and CNL-specific programming considerations.

4.1 General Programming Considerations

4.1.1 PGI Compilers

This section describes product features that apply to all applications.

When using the PGI compilers, you should be aware of the following factors.

4.1.1.1 Default MPICH2 and SHMEM Libraries

S-2396-20

Users of the PGI Fortran compiler have the option of promoting default integer,
real, and logical operations to 64-bit precision. By including the - def aul t 64
option on the f t n command line, you pass the - i 8 and - r 8 options to the
compiler. The - i 8 option directs the compiler to use 64 bits for the data size of
default integer and logical operations. The - r 8 option directs the compiler to use
64 bits for the data size of default real variables.

All Fortran source files for the application containing default integer, logical,
real, or complex variables must be compiled this way. In addition, for MPI
applications the - def aul t 64 option directs the linker to use the default64
version of the MPI library. For SHMEM applications, the - def aul t 64 option
directs the linker to use the default64 version of the SHMEM library.

Remember to link in default6é4 mode. If you compile using - def aul t 64 but
omit the - def aul t 64 option when linking the compiled object files into an
executable, the compiler will attempt to link to the default32 libraries, and the
resulting executable probably will not run.

Note: The sizes of data types that use explicit kind and star values are not
affected by this option.

23

Cray XT™ Series Programming Environment User's Guide

For further information, see the f t n(1) man page.

4.1.1.2 Unsupported C++ Header Files

PGI does not provide a complete set of the old C++ Standard Library and
STL header files. PGI C++ does support some old header files (i ost r eam h,
exception. h,i omani p. h,io0s. h,istream h, ostream h, new. h,
streanbuf. h,strstream h, and t ypei nf 0. h), which include their C++
Standard Library counterpart.

To use an unsupported header file, you can:
= Delete the . h. For example, change <vect or . h>to <vect or >, or

= Create your own headerfile. h file and use the - | compiler option to direct
the compiler to access the header file in your directory:

#i f ndef __ VECTOR_H
#define __ VECTOR H
#i ncl ude <vector>

using std::vector;
#endi f

4.1.1.3 Restrictions on Large Data Objects

The PGI compilers support data objects larger than 2 GB. However, the Cray XT
series Programming Environment has restrictions in this area because the
user-level libraries (MPI, SHMEM, and LibSci) are compiled in the small memory
model.

The only way to build an application with data objects larger than 2 GB is to limit
the static data sections to less than 2 GB by converting static data to dynamically
allocated data.

4.1.1.4 The FORTRAN STOP Message

24

For PGI Fortran, the st op statement writes a FORTRAN STOP message to
standard output. In a parallel application, the FORTRAN STOP message is written
by every process that executes the st op statement: potentially, every process in
the communicator space. This is not scalable and will cause performance and,
potentially, reliability problems in applications of very large scale.

You can turn off the STOP message by using the NO_STOP_MESSAGE
environment variable. For examples, see Example 9, page 105 and Example 27,
page 142.

S-2396-20

Programming Considerations [4]

4.1.1.5 Unsupported Compiler Command Options

The following PGI compiler command options are not supported on Cray XT
series systems:

e - mpr of =npi
e - Mmpi

e -Mscal apack

4.1.1.6 Suppressing Vectorization

Cray XT series systems support the following methods of suppressing
vectorization in PGI applications:

= The - Mhovect compiler option suppresses vectorization for the entire source
file.

< The! pgi $r novect or directive or #pragna routi ne novect or
statement placed before the start of a routine suppresses vectorization for
the entire routine.

e The!pgi $ novect or directive or #pragma | oop novect or statement
placed before a loop suppresses vectorization for the loop. This directive does
not suppress vectorization for loops nested inside the targeted loop, so in
most cases you should apply the directive to innermost loops.

For further information, see the PGI User's Guide.

4.1.2 PGI Debugger
The PGI debugger, PGDBG, is not supported on Cray XT series systems.

4.1.3 PathScale Fortran Compiler

Users of the PathScale Fortran compiler have the option of promoting default
integer, real, and logical operations to 64-bit precision. By including the

- def aul t 64 option on the f t n command line, you pass the-i 8 and -r 8
options to the compiler. The - i 8 option directs the compiler to use 64 bits for the
data size of default integer and logical operations. The - r 8 option directs the
compiler to use 64 bits for the data size of default real variables.

S-2396-20 25

Cray XT™ Series Programming Environment User's Guide

All Fortran source files for the application containing default integer, logical,
real, or complex variables must be compiled this way. In addition, for MPI
applications the - def aul t 64 option directs the linker to use the default64
version of the MPI library. For SHMEM applications, the - def aul t 64 option
directs the linker to use the default64 version of the SHMEM library.

Remember to link in default64 mode. If you compile using the - def aul t 64
option but omit the - def aul t 64 option when linking the compiled object files
into an executable, the compiler will attempt to link to the default32 libraries, and
the resulting executable probably will not run.

Note: The sizes of data types that use explicit kind and star values are not
affected by this option.

For further information, see the f t n(1) man page.

4.1.4 Little-endian Support
The Cray XT series system supports little-endian byte ordering. The least
significant value in a sequence of bytes is stored first in memory.

4.1.5 Portals Message Size Limit

A single Portals message cannot be longer than 2 GB.

4.1.6 Shared Libraries

The Cray XT series systems currently do not support dynamic loading of
executable code or shared libraries. Also, the related LD _PRELQOAD environment
variable is not supported.

4.2 CNL Programming Considerations
This section describes the factors you need to take into consideration when
developing applications to be run on CNL compute nodes.

4.2.1 CNL glibc Functions

CNL provides limited support of the process control functions such as popen(),
fork(),andexec(); the resulting processes execute in the limited RAM disk
environment on each compute node.

26 S-2396-20

Programming Considerations [4]

4.2.2 1/0 Support

S-2396-20

The exec() function can execute the scp and ksh commands and the following
BusyBox commands:

ash gunzip ni ce
cat kill pi ng
chnod killall ps
chown I'n renice
cp rm cpio
I's tail dnesg
nkdi r t est free
Vi grep nor e
zcat

For further information, see the busybox(1) man page.

CNL supports the cpui nf o and nemi nf o / pr oc files. These files contain
information about your compute node.

CNL glibc does not support:
e Thegetgrgid(),getgrnan(),get pwnan{(), and get pwi d() functions.
« Customer-provided functions that require a daemon.

Appendix A, page 181 lists the glibc functions that CNL supports. The glibc
functions that CNL does not support are so noted in their man pages.

The 1/0 operations allowed in CNL applications are Fortran, C, and C++
1/0 calls; Cray MPICH2, Cray SHMEM, and OpenMP 1/0 functions; and the
underlying Linux Lustre client 1/0 functions.

In Catamount, 1/0 is possible to any file system accessible to yod. Lustre I/0 is
handled as a special case. In CNL, only 1/0 to Lustre is supported. Files in other
remote file systems cannot be accessed. One exception is the handling of stdin,
stdout, and stderr.

27

Cray XT™ Series Programming Environment User's Guide

The apr un utility handles stdin, stdout, and stderr. The apr un file descriptor 0
forwards st di n data to processing element 0 (PE 0) only; st di n is closed on all
other PEs. The st dout and st derr data from all PEs is sent to apr un, which
forwards the data to file descriptors 1 and 2.

Files local to the compute node, such as ones in/ pr oc or/ t np, can be accessed
by a CNL application.

4.2.3 External Connectivity

4.2.4 Timing Functions

4.2.5 Signal Support

28

Cray XT series systems support external connectivity to or from compute nodes
running CNL. You can use IP functions in your programs to access network
services. To determine if your site has configured CNL compute nodes for
network connectivity, see your system administrator.

CNL supports the following timing functions:

= CPU timers. CNL supports the Fortran cpu_t i me() function. The Fortran
cpu_ti me(time) intrinsic subroutine returns the processor time, where time
has a data type of r eal 4 or r eal 8. The magnitude of the value returned by
cpu_ti nme() is not necessarily meaningful. You call cpu_ti nme() before and
after a section of code; the difference between the two times is the amount of
CPU time (in seconds) used by the program.

= Elapsed time counter. CNL supports the MPI _W i me() and
MPI _W i ck() functions and the Fortran syst em cl ock() intrinsic
subroutine.

The MPI _W i nme() function returns the elapsed time. The MPI _W i ck()
function returns the resolution of MPI _W i me() in seconds.

CNL does not support the dcl ock() oreti nme() functions.

The apr un utility catches and forwards the SI GHUP, SI G NT, SI GQUI T,
SI GTERM SI GABRT, SI GUSR1, and SI GUSR2 signals to an application. For
further information, see Section 7.8, page 58.

S-2396-20

Programming Considerations [4]

4.2.6 Core Files

4.2.7 Page Size

4.2.8 Resource Limits

4.2.9 One Application Per

When an application fails on CNL, one core file is generated for the first failing
process. An application generates no core file at all if a file named cor e already
exists in the current directory.

CNL supports a single page size of 4 KB.

Memory limits are defined by the node default or the apr un - moption. Time
limits are inherited from the apr un process limits or specified with the apr un
-t option. Other limits are inherited from the limits of apr un. All limits apply
to individual processing elements; there are no aggregate application limits that
can be specified with apr un options.

Node Limitation

The Cray XT series currently does not support running more than one CNL
application on a dual-core compute node.

4.2.10 Parallel Programming Models

The MPI, SHMEM, and OpenMP parallel programming models are supported
on CNL applications.

4.2.11 Modified Copy-on-write Process

S-2396-20

Under Linux, f or k() uses a copy-on-write process to conserve time and
memory resources. When a process forks a child process, most of the pages in the
parent process' address space are initially shared with the child process. The
parent and child processes can continue sharing a page until one of the processes
tries to modify the page. At that point, the process modifying the page creates

a new page for its private use, copies the previously-shared page's data into it,
and continues to use this new page instead of the previously-shared page. The
previously-shared page now belongs solely to the other process.

29

Cray XT™ Series Programming Environment User's Guide

The copy-on-write process can adversely affect Cray XT user applications that
use Portals. To correct this problem, Cray modified the Portals kernel to perform
a partial copy when a process forks a child process. For each region of a process'
address space that is registered with Portals for Remote Direct Memory Access
(RDMA), the first and last page of the region are copied to a private page in the
child's address space as the fork occurs. This ensures that Portals can continue to
transfer data using these pages in the parent's address space, and also ensures
that any data residing on these pages that were not intended for Portals transfers
(such as heap variables) can be referenced in the child's address space.

The implications for application developers are:

= Pages in the middle of a Portals memory region (likely maps to any large MPI
message buffers) are not accessible in the child process. You should copy the
necessary data out of the parent's message buffer before forking.

= More memory is allocated and copied than in a normal fork. This could cause
unexpected memory exhaustion if you have many Portals memory regions.

4.3 Catamount Programming Considerations

This section describes the factors you need to take into consideration when
developing applications to be run on Catamount compute nodes.

4.3.1 Catamount glibc Functions

Because Catamount is designed specifically to provide critical support to
high-speed computational applications, its functionality is limited in certain
areas where the service nodes are expected to take over. In particular, glibc on
Catamount does not support:

= Dynamic process control (such as exec(), popen(),fork(),orsystem
library calls).

e Threading.

e The/ proc files such as cpui nf o and mem nf 0. (These files contain
information about your login node.)

e Theptrace() system call.

30 S-2396-20

Programming Considerations [4]

4.3.2 1/O Support

S-2396-20

e The mmap() function. If mmap() is called, a skeleton function returns - 1.
You should use mal | oc() instead of mmap() if the mmap() call is using
the MAP_ANONYMOUS flag; mal | oc() is not an appropriate replacement for
nmap() calls that use the MAP_FI XED or MAP_FI LE flag. If you do use
mal | oc(), be aware that you may have to resolve data alignment issues. See
the mal | oc() man page for details.

Note: The Cray XT series system provides two implementations of

mal | oc(): Catamount nal | oc() and GNU nal | oc() . Catamount
provides a custom implementation of the mal | oc() function. This
implementation is tuned to Catamount's non-virtual-memory operating
system and favors applications allocating large, contiguous data arrays.
The function uses a first-fit, last-in-first-out (LIFO) linked list algorithm.
For information about gathering statistics on memory usage, see the
heap_i nf 0(3) man page. In some cases, GNU nal | oc() may improve
performance.

e Theprofil () function.

= Anyofthe get pwd*(), getgr*(),andget pw+ () families of library calls.
= Terminal control.

« Customer-provided functions that require a daemon.

= Any functions that require a database, such as Network Block Device (NDB)
functions. For example, there is no support for the ui d and gi d family of
gueries that are based on the NDB functions.

= There is limited support for signals and i oct | () . See the man page for
details.

Appendix B, page 187 lists the glibc functions that Catamount supports. The
glibc functions that Catamount does not support are so noted in their man pages.

1/0 support for Catamount applications is limited. The only operations allowed
are Fortran, C, and C++ I/0 calls; Cray MPICH2 and Cray SHMEM 1/0
functions; and the underlying Catamount (libsysio) and Lustre (liblustre) 1/0
functions.

31

Cray XT™ Series Programming Environment User's Guide

Application programmers should keep in mind the following behaviors:

=« 1/0 is offloaded to the service 1/0 nodes. The yod application launcher
handles st di n, st derr, and st dout . For more information, see Section
8.6, page 64.

e Calling an 170 function such as open() with a bad address causes the
application to fail with a page fault. On the service nodes, a bad address
causes the function toseterrno = EFAULT and return - 1.

« Catamount does not support 1/0 on named pipes.
The following sections describe techniques you can use to improve 1/0
performance.
4.3.2.1 Improving Fortran I/O Performance
To increase buffer size in a Fortran program, use the set vbuf 3f () function:

i nteger function setvbuf3f(Iu, type, size)

Table 2. set vbuf 3f () Arguments

Argument Description
i nteger Iu The logical unit
i nteger type 0 — Full buffering

1 — Line buffering
2 — No buffering

i nteger size The size of the new buffer

The set vbuf 3f () function returns 0 on success, honzero on failure. For further
information, see the set buf (3) man page.

4.3.2.2 Improving C++ I/O Performance

The standard stream 170 facilities defined in the Standard C++ header file

<i ost r ean® are unbuffered. You can use the routine pubset buf () to specify
a buffer for 1/0. Example 29, page 144 shows how pubset buf () can improve
performance.

32 S-2396-20

Programming Considerations [4]

1/0-to-file streams defined in <f st r ean® are buffered with a default buffer

size of 4096. You can use pubset buf () to specify a buffer that has a different
size. You must specify the buffer size before the program performs a read or
write to the file; otherwise, the call to pubset buf () is ignored and the default
buffer is used. Example 30, page 145 shows how to use pubset buf () to specify
a buffer for <f st r ean® file I/0. Avoid calls to member function end! to prevent
the buffer from being flushed.

4.3.2.3 Improving st di o Performance

By default, st di n, st dout, and st der r are unbuffered. Under Catamount, this
limits the data transfer rate to approximately 10 bytes per second because read
and write calls are offloaded to yod. To improve performance, call set vbuf () to
buffer st di n input or st dout /st der r output. For an example showing how to
improve st di o performance, see Example 31, page 147.

4.3.2.4 Improving Large File, Sequential /0O Performance

S-2396-20

IOBUF is an 1/0 buffering library that can reduce the 1/0 wait time for programs
that read or write large files sequentially. IOBUF intercepts standard 1/0 calls
such asfread() and f open() and replaces the stdio layer of buffering with

a replacement layer of buffering, thus improving program performance by
enabling asynchronous prefetching and caching of file data. In addition, IOBUF
can gather run time statistics and print a summary report of 1/0 activity for
each file.

No program source changes are needed to use IOBUF. Instead, you relink your
program with the IOBUF library and set one or more environment variables.

To use IOBUF, follow these steps:
1. Load thei obuf module:
% nmodul e | oad i obuf
2. Relink the program.
3. Set the | OBUF_PARAMS environment variable.

The | OBUF_PARANS environment variable specifies patterns for selecting
170 files and sets parameters for buffering. If this environment variable is not
set, the default state is no buffering and the 1/0 call is passed on to the next
layer without intervention.

33

Cray XT™ Series Programming Environment User's Guide

The general format of the | OBUF_PARANS environment variable is a
comma-separated list of specifications:

| OBUF_PARAMS ' specl, spec2, spec3, ...'

Each specification begins with a file name pattern. When a file is opened, the
list of specifications is scanned and the first matching file name pattern is
selected. If no pattern matches, the file is not buffered. The file name pattern
follows standard shell pattern matching rules. For example, to buffer stdout,
use:

% set env | OBUF_PARAMS ' ¥%st dout '
4. Execute the program.

Note: IOBUF works with PGI Fortran programs but does not work with
PathScale Fortran or GNU Fortran programs. Also, IOBUF works with the
PGlI, PathScale, and GNU C compilers. IOBUF works with C++ programs that
use stdio but does not work with the C++ standard buffered 170 stream class
<i ostreanp.

C programs that use POSIX-style 170 calls like open(),read(),wite(),and
cl ose() are not affected by IOBUF. A workaround is to replace POSIX I/0 calls
in the C program with their equivalent IOBUF-specific calls. The IOBUF calls are
identical to their POSIX counterparts but are prefixed with i obuf _.

For further information, see the i obuf (3) man page.

4.3.2.5 Using Stride 1/0 Functions to Improve Performance

You can improve file 1/0 performance of C and C++ programs by using the
readx(),witex(),ireadx(),andiwitex() stride 1/0 functions. For
further information, see the man pages.

4.3.2.6 Reducing Memory Fragmentation

34

In past releases, small memory allocations could become interspersed throughout
memory, preventing the allocation of very large arrays (that is, arrays larger

than half of available memory). To solve this problem, small allocations (those
less than or equal to 100 MB, by default) are still allocated into the beginning of
the first available free area of memory, but large allocations are now allocated
into the end of the last available free area. This allows very large arrays to be
allocated/freed in a separate area of memory, making memory fragmentation
less likely.

S-2396-20

Programming Considerations [4]

You can use the CATMALLOC LARGE ALLOC Sl ZE environment variable to
change the default small versus large delineation line.

4.3.3 External Connectivity

4.3.4 Timing Functions

S-2396-20

Cray XT does not support external connectivity to or from compute nodes
running Catamount. Pipes, sockets, remote procedure calls, or other types of
TCP/IP communication are not supported. The Cray MPICH2, Cray SHMEM,
and OpenMP parallel programming models and the underlying Portals interface
are the only supported communication mechanisms.

Catamount supports the following timing functions:

Interval timer. Catamount supports the setiti ner | TI MER _REAL
function. It does not support the setti nmer | Tl MER_VI RTUAL or the
setitinmer |TIMER PROF function. Also, Catamount does not support
the geti ti ner () function.

CPU timers. Catamount supports the glibc get r usage() and the Fortran
cpu_ti nme() functions. For C and C++ programs, get r usage() returns
the current resource usages of either RUSAGE_SELF or RUSAGE_CHI LDREN.
The Fortran cpu_t i me(time) intrinsic subroutine returns the processor
time, where time has a data type of r eal 4 or r eal 8. The magnitude of
the value returned by cpu_t i me() is not necessarily meaningful. You call
cpu_ti nme() before and after a section of code; the difference between the
two times is the amount of CPU time (in seconds) used by the program.

Elapsed time counter. The dcl ock(), Catamount cl ock(), and
MPI _W i me() functions and the syst em cl ock() Fortran intrinsic
subroutine calculate elapsed time. The et i ne() function is not supported.

The dcl ock() value rolls over approximately every 14 years and has a
nominal resolution 100 nanoseconds on each node.

Note: The dcl ock() function is based on the configured processor
frequency, which may vary slightly from the actual frequency. The clock
frequency is not calibrated. Furthermore, the difference between configured
and actual frequency may vary slightly from processor to processor.
Because of these two factors, accuracy of the dcl ock() function may be off
by as much as +/-50 microseconds/second or 4 seconds/day.

The syst em cl ock() function has a resolution of 1000 ticks per second.

35

Cray XT™ Series Programming Environment User's Guide

4.3.5 Signal Support

4.3.6 Core Files

36

The cl ock() function is now supported on Catamount; it estimates elapsed
time as defined for dcl ock() . The Catamount cl ock() function is not

the same as the Linux cl ock() function. The Linux cl ock() function
measures processor time used. For Catamount compute node applications,
Cray recommends that you use the dcl ock() function or an intrinsic timing
routine in Fortran such as cpu_ti me() instead of cl ock() . For further
information, see the dcl ock(3) and cl ock(3) man pages.

The MPI _W i me() function returns the elapsed time. The MPI _W i ck()
function returns the resolution of MPI _W i me() in seconds. For an example
showing how to use dcl ock() to calculate elapsed time, see Example 28,
page 143.

In previous Cray XT series releases, Catamount did not correctly provide
extra arguments to signal handlers when the user requested them through
si gaction(). Signal handlers installed through si gacti on() have the
prototype:

voi d (*handler) (int, siginfo_t *, void *)

which allows a signal handler to optionally request two extra parameters. On
Catamount compute nodes, these extra parameters are provided in a limited
fashion when requested.

The si gi nf o_t pointer points to a valid structure of the correct size but contains
no data.

The voi d * parameter points to a ucont ext _t structure. The uc_ntont ext
field within that structure is a platform-specific data structure that, on compute
nodes, is defined as a si gcont ext _t structure. Within that structure, the
general purpose and floating-point registers are provided to the user. You should
rely on no other data.

For a description of how yod propagates signals to running applications, see
Section 8.7, page 64.

By default, when an application fails on Catamount, only one core file is
generated: that of the first failing process. For information about overriding the
defaults, see the cor e(5) man page. Use caution with the overrides because
dumping core files from all processes is not scalable.

S-2396-20

Programming Considerations [4]

4.3.7 Page Size

4.3.8 Resource Limits

Theyod -smal | _pages option allows you to specify 4 KB pages instead of the
default 2 MB pages. Locality of reference affects the optimum choice between the
default 2 MB pages and the 4 KB pages. Because it is often difficult to determine
how the compiler is allocating your data, the best approach is to try both the
default and the - smal | _pages option and compare performance numbers.

Note: For each 1 GB of memory, 2 MB of page table space are required.

The Catamount get pagesi ze() function returns 4 KB.

Because a Catamount application has dedicated use of the processor and physical
memory on a compute node, many resource limits return RLI M_| NFI NI TY. Keep
in mind that while Catamount itself has no limitation on file size or the number
of open files, the specific file systems on the Linux service partition may have
limits that are unknown to Catamount.

On Catamount, the setrli ni t () function always returns success when given
a valid resource name and a non-NULL pointertoanr|i m t structure. The
rlimt value is never used because Catamount gives the application dedicated
use of the processor and physical memory.

4.3.9 Parallel Programming Models

S-2396-20

The MPI and SHMEM parallel programming models are supported on
Catamount applications. OpenMP is not supported on Catamount.

37

Cray XT™ Series Programming Environment User's Guide

38 S-2396-20

Compiler Overview [5]

The Cray XT series Programming Environment includes Fortran, C, and C++
compilers from PGI, GNU, and PathScale. You access the compilers through
Cray XT series compiler drivers. The compiler drivers perform the necessary
initializations and load operations, such as linking in the header files and system
libraries (1 i bc. aand | i bnpi ch. a, for example) before invoking the compilers.

5.1 Setting Your Target Architecture

Before you begin to compile programs, you must verify that the target
architecture is set correctly. The target architecture is used by the compilers

and linker in creating executables to run on either CNL or Catamount

compute nodes; it is set automatically when you log in. If the compute

nodes are running CNL, the xt pe-t ar get - cnl module is loaded and the
XTPE_COWPI LE_TARGET environment variable is set to | i nux. If the compute
nodes are running Catamount, the xt pe-t ar get - cat anount module is loaded
and XTPE_COWPI LE_TARGET is set to cat anount .

To determine the current target architecture, use the nodul e |i st command.
Either xt pe-t ar get - cnl or xt pe-t ar get - cat anount will be loaded.

You cannot run a CNL application on compute nodes running Catamount
nor a Catamount application on compute nodes running CNL. However, you
can create CNL or Catamount executables at any time by configuring your
environment properly.

For example, if the target architecture is cat anmount and you want to create
executable to run under CNL, swap xt pe-t ar get modules:

% nodul e swap xt pe-target-catanmunt xtpe-target-cnl

S-2396-20 39

Cray XT™ Series Programming Environment User's Guide

5.2 Using Compilers

5.2.1 Using PGI Compilers

40

The syntax for invoking the compiler drivers is:

% compiler command [PGI_options| GCC options| PathScale options]
filename, ...

For example, to use the PGI Fortran compiler to compile pr ogl. f 90 and create
default executable a. out to be run on CNL compute nodes, first verify that the
following modules have been loaded:

Pr gEnv- pgi
xt pe-target-cnl

Then use the following command:
% ftn progl.f90

If you next want to use the PathScale C compiler to compile pr 0og2. ¢ and create
default executable a. out to be run on Catamount compute nodes, use the
following commands:

% nodul e swap PrgEnv-pgi PrgEnv-pathscal e
% nodul e swap xtpe-target-cnl xtpe-target-catanmount

Then invoke the C compiler:
% cc prog2.c

Note: Verify that your CNL and Catamount executables are stored in separate
directories or differentiated by file name. If you try to run a CNL application
when Catamount is running or a Catamount application when CNL is
running, your application will abort.

To use the PGI compilers, run the modul e |i st command to verify that the
Pr gEnv- pgi module is loaded. If it is not, use a modul e swap command,
such as:

% nodul e swap PrgEnv-gnu PrgEnv- pgi

Pr gEnv- pgi loads the product modules that define the system paths and
environment variables needed to use the PGI compilers.

For a description of new and modified PGI compiler features, see the PGI Server
7.0 and Workstation 7.0 Installation and Release Notes.

S-2396-20

Compiler Overview [5]

S-2396-20

Note: When linking in ACML routines, you must compile and link all program
units with - Mcache_al i gn or an aggregate option such as f ast sse, which
incorporates - Mcache_al i gn.

The commands for invoking the PGI compilers and the source file extensions are:

Table 3. PGI Compiler Commands

Compiler Command Source File

C compiler cc filename. C

C++ compiler cC filename. C

Fortran 90/95 compiler ftn filename. f (fixed source)

filename. f 90,
filename. f 95,
filename. F95 (free source)

FORTRAN 77 compiler f77 filename. f 77

Caution: To invoke a PGI compiler, use the cc, CC, ft n, or f 77 command.
If you invoke a compiler directly using a pgcc, pgCC, pgf 95, or pgf 77
command, the resulting executable will not run on a Cray XT series system.

The cc(1), CC(1), ft n(1), and f 77(1) man pages contain information about
the compiler driver commands, whereas the pgcc(1), pgCC(1), paf 95(1),
and pgf 77(1) man pages contain descriptions of the PGI compiler command
options.

The PGI User's Guide and the PGI Fortran Reference manual
include information about compiler features unique to Cray (see
htt p://ww. pgroup. com r esour ces/ docs. ht m.

Examples of compiler commands:

% cc -c nyCprog.c

% CC -0 ny_app nmyprogl. o nyCCprog. C

% ftn -fastsse -M pa=fast prog.f sanplel.f
%cc -c cl.c

%ftn -o appl f1.f90 cl.o0

To verify that you are using the correct version of a compiler, use the - V option
onacc, CC ftn,orf77 command.

41

http://www.pgroup.com/resources/docs.htm

Cray XT™ Series Programming Environment User's Guide

Note: The - Mconcur (auto-concurrentization of loops) option documented in
the PGI manuals is not supported on Cray XT series systems.

5.2.2 Using GNU Compilers

42

To use the GNU compilers, run the nodul e |i st command to verify that the
Pr gEnv- gnu module is loaded. If it is not, use a modul e swap command,
such as:

% nodul e swap PrgEnv-pgi PrgEnv-gnu

Pr gEnv- gnu loads the product modules that define the system paths and
environment variables needed to use the GNU compilers.

Both GCC 3.3.3 and 4.2.1 are supported. GCC 3.3.3 includes the FORTRAN 77,
C, and C++ compilers; GCC 4.2.1 includes the Fortran 95, C, and C++ compilers.
The f 77 command compiles FORTRAN 77 programs. You can use the ftn
command to compile either Fortran 95 or FORTRAN 77 programs.

To determine whether the desired GCC module is loaded, use the mrodul e | i st
command. If the desired module is not loaded, use the nodul e swap command,
such as:

% nodul e swap gcc/3.3.3 gecec/4.2.1

The commands for invoking the GNU compilers and the source file extensions
are:

Table 4. GNU Compiler Commands

Compiler Command Source File
C compiler cc filename. C
C++ compiler cC filename. CC,

filename. C++,
filename. C

Fortran 95 and FORTRAN 77 ftn filename. f,
compilers (GCC 4.1.1 and later) filename. f 90,
filename. f 95
FORTRAN 77 compiler (GCC 3.2.3 f77 filename. f
only)
S-2396-20

Compiler Overview [5]

The Using the GNU Compiler Collection (GCC) manual provides general
information about the GNU compilers. The GNU Fortran 95 Compiler Manual and
the G77 Manual include information about compiler features unique to Cray (see
http://gcc. gnu. org/onlinedocs/).

Caution: To invoke a GNU compiler, use the cc, CC, ft n, or f 77 command.
If you invoke a compiler directly using a gcc, g++, gf ortran, or g77
command, the resulting executable will not run on a Cray XT series system.

The cc(1), CC(1), ft n(1), and f 77(1) man pages contain information about
the compiler driver commands, whereas the gcc(1), g++(1), gf or t r an(2),
and g77(1) man pages contain descriptions of the GNU C compiler command
options.

Examples of GNU compiler commands (assuming the Pr gEnv- gnu module is
loaded):

%cc -c cl.c

% CC -0 appl progl.o Ci1.C

% ftn -o npiapp npil.f npi2.0
% f77 -0 sanpl el sanplel.f

To verify that you are using the correct version of a GNU compiler, use the
--versionoptiononacc, CC ftn,orf77 command.

Note: To use CrayPat with a GNU program to trace functions, use the
-finstrument - functi ons option instead of - Mpr of =f unc when
compiling your program.

5.2.3 Using PathScale Compilers

S-2396-20

To use the PathScale compilers, run the nodul e | i st command to verify that
the Pr gEnv- pat hscal e module is loaded. If it is not, use a nodul e swap
command, such as:

% nodul e swap PrgEnv-pgi PrgEnv-pathscal e

Pr gEnv- pat hscal e loads the product modules that define the system paths
and environment variables needed to use the PathScale compilers.

43

http://gcc.gnu.org/onlinedocs/

Cray XT™ Series Programming Environment User's Guide

44

The commands for invoking the PathScale compilers and the source file

extensions are:

Table 5. PathScale Compiler Commands

Compiler Command Source File
C compiler cc filename. ¢
C++ compiler cC filename. CC
filename. cc
filename. cpp
filename. cxx
Fortran 90/95 and FORTRAN ftn filename. f (fixed source, no

77 compilers

preprocessing)

filename. f 90 (free source, no
preprocessing)

filename. f 95 (free source, no
preprocessing)

filename. F (fixed source,
preprocessing)

filename. F9O (free source,
preprocessing)

filename. F95 (free source,
preprocessing)

To verify that you are using the correct version of a PathScale compiler, use the
-versi onoptiononacc , CC, orftncommand.

S-2396-20

Compiler Overview [5]

Caution: To invoke a PathScale compiler, use either the cc, CC,orftn
command. If you invoke a compiler directly using a pat hcc, pat hCC, or
pat h95 command, the resulting executable will not run on a Cray XT series
system.

The cc(1), CC(1), and f t n(1) man pages contain information about the
compiler driver commands, whereas the pat hcc(1), pat hCC(1), and
pat h95(1) man pages contain descriptions of the PathScale compiler
command options.

The eko(7) man page gives the complete list of options and flags for the
PathScale compiler suite.

Examples of PathScale compiler commands (assuming the Pr gEnv- pat hscal e
module is loaded):

%cc -c cl.c
% CC -0 appl progl.o C2.C
% ftn -o sanpl el sanmplel.f

For more information about using the compiler commands, see the PathScale
manuals at ht t p: / / www. pat hscal e. com docs/ ht M and the following man

pages:

S-2396-20

Introduction to PathScale compilers: pat hscal e-i nt r o(1) man page

C compiler: Cray cc(1) man page and PathScale pat hcc(1) and eko(7) man
pages

C++ compiler: Cray CC(1) man page and PathScale pat hCC(1) and eko(7)
man pages

Fortran compiler: Cray f t n(1) man page and PathScale pat h95(1) and
eko(7) man pages

45

http://www.pathscale.com/docs/html

Cray XT™ Series Programming Environment User's Guide

46 S-2396-20

Getting Compute Node Status [6]

Before running applications, you should check the status of the compute nodes.

First, use either the xt procadm n - Aorcnsel ect -L oscl ass command to
find out whether CNL or Catamount is running on the compute nodes.

For the xt pr ocadni n - Areport, the CS field value is CNL or Cat anmount for
all compute nodes, and ser vi ce for all service nodes. For the cnsel ect -L
oscl ass report, oscl ass is 1 for Catamount and 2 for CNL.

% xt procadnin -A

NI D (HEX) NODENAME TYPE ARCH OS CORES AVAI LMEM PAGESZ CLOCKMHZ
<sni p>
93 0x5d c0-0c2s7n1 conpute xt CNL 1 2000 4096 2400
94 Ox5e ¢0-0c2s7n2 conpute xt CNL 1 2000 4096 2400
95 0x5f ¢0-0c2s7n3 conpute xt CNL 1 2000 4096 2400
128 0x80 c1-0c0s0On0 service xt (service) 1 4000 4096 2400
131 0x83 ¢1-0c0s0On3 service xt (service) 1 4000 4096 2400
132 0x84 c1-0c0s1n0 service xt (service) 1 2000 4096 2400
<sni p>

% cnsel ect -L osclass
2

Then use the xt showresh or xt showcabs command. These utilities show node
status (up or down, allocated to interactive or batch processing, free or in use).
Each character in the display represents a single node. For systems running a
large number of jobs, more than one character may be used to designate a job.

% xt showresh
Conpute Processor Allocation Status as of Wed Sep 12 08: 06:28 2007

CO (Xdir) C1(Xdir) C2(Xdir) C3 (Xdir) C4 (Xdir) C5 (Xdir)

S-2396-20 47

Cray XT™ Series Programming Environment User's Guide

48

Z dir-> 01234567 01234567 01234567 01234567 01234567 01234567
Y dir 0 SSSSSs-- @ --------

1 ac c--e----
2 b- a-ee----
3 SSSSSS-- - -------

C2 (Xdir) €3 (Xdir) C4 (Xdir) C5 (Xdir) C6 (Xdir) C7 (Xdir)

Z dir-> 01234567 01234567 01234567 01234567 01234567 01234567
Ydir 0 -------- --------

C4 (Xdir) C5(Xdir) C6 (Xdir) C7 (Xdir) C8 (Xdir) C9 (Xdir)

Z dir-> 01234567 01234567 01234567 01234567 01234567 01234567
Ydir O

[En

© 0O ~NO UL WN

S-2396-20

Getting Compute Node Status [6]

10
11 S

C6 (Xdir) C7 (Xdir) C8 (Xdir) C9 (Xdir)

Z dir-> 01234567 01234567 01234567 01234567
Ydir 0 -------- --------

c8 (Xdir) C9 (Xdir)

Z dir-> 01234567 01234567
Ydir 0 -------- --------

Legend:

nonexi st ent node

free interactive compute CNL

al l ocated, but idle conpute node
down conput e node

adm ndown conput e node

wn

servi ce node

free batch conmpute node CNL
suspect conpute node

down or admi ndown service node
node is routing

N X >
T <

Avai | abl e conpute nodes: 0 interactive, 740 batch

S-2396-20 49

Cray XT™ Series Programming Environment User's Guide

ALPS JOBS LAUNCHED ON COVPUTE NODES

Job ID User Si ze Age command |ine
a 30626 userl 1 1h36m ar ps_npi
b 30625 userl 1 1h36m pop. 2
c 30627 userl 1 1h36m al dh2_hydri de
d 30631 wuserl 1 1h36m pop. 1

% xt showcabs
Conpute Processor Allocation Status as of Wed Sep 12 08: 09:40 2007

(o [i il
N3 SSS8S8S-- ----mmes memdeeee mmmacnee memeecee memecees emeecee cneanee-
n2 LR e e
nl T e I L

CON0 SSSSSS-- ~-mcc-ee mmcmccme meedces memeeee memeemen meeecee emee-aa-

s01234567 01234567 01234567 01234567 01234567 01234567 01234567 01234567

Legend:
nonexi st ent node S service node
; free interactive compute CNL - free batch conmpute node CNL
A allocated, but idle conpute node ? suspect conpute node
X down conpute node Y down or admi ndown service node
Z admi ndown conput e node R node is routing
Avai | abl e conpute nodes: 0 interactive, 740 batch

ALPS JOBS LAUNCHED ON COVWPUTE NCDES
Job ID User Si ze Age command |ine

a 30626 userl 1 1h40m ar ps_npi

b 30625 userl 1 1h40m pop. 2

c 30627 userl 1 1h40m al dh2_hydri de
d 30631 wuserl 1 1h40m pop. 1

50 S-2396-20

Getting Compute Node Status [6]

S-2396-20

Use xt shownesh on systems with topology class 0 or 4 and xt showcabs on
systems with topology class 1, 2, or 3. Contact your system administrator if you
do not know the topology class of your system.

Note: If xt showcabs or xt shownesh indicates that no compute nodes
have been allocated for interactive processing, you can still run your job
interactively by using the PBS Pro gsub -1 command and then, when your
job has been queued, using either the apr un or yod application launch
command.

For more information, see the xt pr ocadm n(1), xt showresh(1), and
xt showcabs (1) man pages.

51

Cray XT™ Series Programming Environment User's Guide

52 S-2396-20

Running CNL Applications [7]

The apr un utility launches applications on CNL compute nodes. The utility
submits applications to the Application Level Placement Scheduler (ALPS) for
placement and execution, forwards the user's environment, forwards signals, and
manages the stdin, stdout, and stderrr streams.

This chapter describes how to run applications interactively on CNL compute
nodes and get application status reports. For a description of batch job
processing, see Chapter 9, page 67.

7.1 aprun Command

You use the apr un command to specify the resources your application requires,
request application placement, and initiate application launch.

The format of the apr un command is:

aprun [-n pes]

[-N pes per node] [-d depth] [-L nodes]

[other arguments] executable name

where:

apr un option

Description

- n pes

- Npes_per_node

- d depth

- L nodes

The number of processing elements (PEs) needed
for the application. A PE is an instance of an
ALPS-launched executable. The - n option applies
to both single-core and dual-core systems.

The number of PEs per node. The - N option
applies only to dual-core systems.

The number of threads per PE. The default is 1.
The - d option applies only to dual-core systems.
Compute nodes must have at least depth cores.

A user-defined placement node list. The node
list must contain at least enough nodes to meet
the application resource requirements. If the
placement node list is too short for the - n, - d,
and - N options, a fatal error is produced. See the
cnsel ect (1) man page for details.

S-2396-20

53

Cray XT™ Series Programming Environment User's Guide

54

You use the - n pes option to request processing elements (PEs). PEs are instances
of the executable.

Note: Verify that you are in a Lustre-mounted directory before using the
apr un command (see Section 2.4, page 11).

For single-core nodes, ALPS creates - n PEs and launches them on - n nodes.
For example, the command:

% aprun -n 64 ./progl

creates 64 instances of pr ogl and launches them on 64 nodes.

For dual-core nodes, ALPS creates - n PEs and uses the - Npes_per_node value

in determining where to place them. Whenever possible, ALPS packs the PEs,
using the smallest number of nodes to fulfill the - n requirements. If you specify
- N 1, ALPS assigns one PE per node.

For example, the command:

% aprun -n 32 ./progl

creates 32 instances of pr og1 and launches them on both cores of 16 nodes.
In contrast, the command:

% aprun -n 32 -N 1 ./progl

creates 32 instances of pr og1l and launches them on one core of 32 nodes. The
other 32 cores are unused.

For OpenMP applications, use the - d option to specify the depth (number of
threads) of each PE. ALPS creates - n pes instances of the executable, and the
executable spawns dept h-1 additional threads per PE.

For example, the command:
% aprun -n 8 -d 2 ./opennpl

creates 8 instances of opennpl on 8 nodes. Each PE spawns one additional
thread.

For examples of CNL applications, see Chapter 13, page 95. For additional
information on apr un, see the apr un(1) man page.

S-2396-20

Running CNL Applications [7]

7.2 apstat Command

The apst at command provides status information about reservations, compute
resources, and pending and placed applications. The format of the apst at
command is:

apstat [-a [apid [apid...]1]] [-n] [-p] [-r] [other arguments]

You can use apst at to display the status of all applications (a), specific
applications (a apid), nodes (n), pending applications (p), and confirmed and
claimed reservations (r).

For example:

% apstat -a
Placed Apid Resld User PEs Nodes Age Comand

48062 39 userl 2 1 2h39m testl
48108 1588 user 2 4 1 Oh1l5m npi 2
48109 1589 user3 4 1 0h0O1m onpl

An application's ID (Api d) in the apst at display is also displayed after apr un
execution results, such as:

% aprun -n 2 -d 2 ./onpl

Hello fromrank O (thread 0) on ni d00540 <-- MASTER
Hello fromrank 1 (thread 0) on ni d00541 <-- MASTER
Hello fromrank O (thread 1) on ni d0O0540 <-- sl ave
Hello fromrank 1 (thread 1) on ni d0O0541 <-- sl ave
Application 48109 resources: utine 0, stime 0%

For further information, see the apst at (1) man page.

7.3 cnsel ect Command

The apr un utility supports manual and automatic node selection. For manual
node selection, first use the cnsel ect command to get a list of compute nodes
that meet the criteria you specify. Then use the apr un - L nodes option to launch
the application. If the number of nodes in the - L nodes list is greater than the
apr un n value, ALPS launches the application on n nodes from the - L nodes list.

The format of the cnsel ect command is:

cnselect [-c] [-1] [[-L] fieldname|[-e] expression]
[other arguments]

S-2396-20 55

Cray XT™ Series Programming Environment User's Guide

where:

= - gives a count of the number of nodes rather than a list of the nodes
themselves.

-1 lists names of fields in the compute nodes attributes database.

- L fieldname lists the current possible values for a given field.

[- e] expression queries the compute node attributes database.

You can use cnsel ect to get a list of nodes selected by such characteristics
as number of cores per node (cor enask), amount of memory on the node
(in megabytes), and processor speed (in megahertz). For example, to run an
application on dual-core nodes with 2 GB of memory or more, use:

% cnsel ect avail mem .ge. 2000 .and. coremask .gt. 1
44-63, 76, 82
% aprun -n 16 -L 44-59 ./appl

If you do not include - L option on the apr un command, ALPS automatically
places the application per available resources.

7.4 Memory Available to CNL Applications

When running large applications, it is important to understand how much
memory will be available per node for your application.

CNL uses approximately 250 MB of memory. The remaining memory is available
for the user program executables; user data arrays; the stacks, libraries and
buffers; and SHMEM symmetric stack heap. For a node with 2.147 GB of
memory, 1.897 GB of memory is available for applications. The default stack size
is 16 MB. The memory used for the MPI libraries is approximately 72 MB.

Note: The actual amount of memory CNL uses varies depending on the total
amount of memory on the node and the OS services configured for the node.

56 S-2396-20

Running CNL Applications [7]

You can use the apr un - msize option to specify the per-PE memory limit. For
example, the following apr un command launches pr ogr aml on cores 0 and 1
of a compute node with 4 GB of available memory:

% aprun -n 2 -N 2 -nR000 ./prograni

hell o from pe 0 of 2
hell o from pe 1 of 2
PE 1: sizeof(long) = 8

PE 1: The answer is: 42

Application 14154 resources: utine 0, stime O

You can change MPI buffer sizes and stack space from the defaults by setting
certain environment variables or apr un options. For more details, see the
aprun(l) and i nt r o_mnpi (3) man pages.

7.5 Launching an MPMD Application

The apr un utility supports multiple-program, multiple-data (MPMD)
applications. To run an MPMD application under apr un, use the - n pes
executablel : - n pes executable2 : ... format. To communicate with each other, all
of the executables share the same MPI _ COVM WORL D process communicator.

This command launches 128 instances of pr ogr aml and 256 instances of
prograng:

aprun -n 128 ./progranl: -n 256 ./prograng

7.6 Managing Compute Node Processors from an MPI Program

Programs that use MPI library routines for parallel control and communication
should call the MPI _Fi nal i ze() routine at the conclusion of the program. This
call waits for all processing elements to complete before exiting.

S-2396-20 57

Cray XT™ Series Programming Environment User's Guide

However, if one of the processes fails to call MPl _Fi nal i ze() for any reason,
the program never completes and apr un stops responding. There are two ways
to prevent this behavior:

= Use the PBS Pro elapsed (wall clock) time limit to terminate the job after a
specified time limit (such as-1 wal | ti me=2: 00: 00).

e Usetheaprun-t secoption to terminate the offending processes. This
option specifies the per-process CPU time limit in seconds. A process will
terminate only if it reaches the specified amount of CPU time (not wallclock
time).

For example, if you use:
% aprun -t 120 ./nyprogl

and a process consumes more than 2 minutes of CPU time, apr un will
terminate the application.

7.7 Input and Output Modes under apr un

The apr un utility handles standard input (st di n) on behalf of the user and
handles standard output (st dout) and standard error messages (st der r) for
user applications.

For other 1/0 considerations, see Section 4.2.2, page 27.

7.8 Signal Handling under apr un

58

The apr un utility catches and forwards these signals to an application: SI GHUP,
SI G NT, SI GQUI T, SI GTERM SI GABRT, SI GUSRL, and SI GUSR2. The apr un
utility ignores SI GPI PE and SI GTTI Nsignals. All other signals are left at
their default behavior and are not forwarded to an application. Those default
behaviors cause apr un to be terminated, resulting in the application being
terminated by a SI GKI LL signal.

S-2396-20

Running Catamount Applications [8]

8.1 yod Command

S-2396-20

The yod utility launches applications on Catamount compute nodes. When you
start a yod process, the application launcher coordinates with the Compute
Processor Allocator (CPA) to allocate nodes for the application and then uses
Process Control Threads (PCTSs) to transfer the executable to the compute nodes.
While the application is running, yod provides 1/0 services for the application,
propagates signals, and participates in cleanup when the application terminates.

This chapter describes how to run applications interactively on Catamount
compute nodes. For a description of batch job processing, see Chapter 9, page 67.

When launching an application with the yod command, you can specify the
number of processors to allocate to the application.

The format of the yod command is:

% yod -sz n [other arguments] executable name

where n is the number of processors on which the application will run.
Theyod -sz, - si ze, and - np options are synonymous.

The following paragraphs describe the differences in the way processors are
allocated on single-core and dual-core processor systems.

= Running applications on single-core processor systems

On single-core processor systems, each compute node has one single-core
AMD Opteron processor. Applications are allocated - sz nodes.

For example, the command:
% yod -sz 6 progl
launches pr ogl on six nodes.

Single-core processing is the default. However, sites can change the default to
dual-core processor mode. Use - SN if the default is dual-core processor mode
and you want to run applications in single-core processor mode.

59

Cray XT™ Series Programming Environment User's Guide

Note: The yod - VNoption turns on virtual node processing mode. The yod
utility runs the program on both cores of a dual-core processor. If you use
the - VN option on a single-core system, the application load will fail.

= Running applications on dual-core processor systems

On dual-core processor systems, each compute node has one dual-core AMD
Opteron processor. The processors are managed by the Catamount Virtual
Node (CVN) kernel. To launch an application, you must include the - VN
option on the yod command unless your site has changed the default.

On a dual-core system, if you do not include the - VN option, your program
will run on one core per node, with the other core idle. You may do this if
you must use all the memory on a node for each processing element or if you
want the fastest possible run time and do not mind letting the second core
on each node sit idle.

8.2 cnsel ect Command

60

The yod utility supports automatic and manual node selection. To use manual
node selection, first use the cnsel ect command to get a list of compute nodes
that meet the criteria you specify. Then use the yod - | i st processor-list option to
launch the application. If the number of nodes in the list is greater than the - sz n
value, yod selects n of the processor-list nodes on which to launch the application.

The format of the cnsel ect command is:

cnselect [-c] [-1] [[-L] fieldname|[-e] expression]
[other arguments]

where:

= - gives a count of the number of nodes rather than a list of the nodes
themselves.

« - lists names of fields in the compute nodes attributes database.
« [-L]fieldname lists the current possible values for a given field.

= [- e] expression queries the compute node attributes database.

S-2396-20

Running Catamount Applications [8]

You can use cnsel ect to get a list of nodes selected by such characteristics as
number of cores per node (cor enask), available memory (in megabytes), and
processor speed (in megahertz). For example, to run an application on dual-core
nodes with 2 GB of memory or more, use:

% cnsel ect -y avail mem.ge. 2000 .and. coremask .gt. 1
44. .63, 76, 82
%yod -VN -sz 16 -list 44..59 ./appl

Note: When using cnsel ect with yod, you need to include the - y option
on the cnsel ect command. This option causes cnsel ect to list ranges of
nodes in yod format (n..n).

If you do not include - | i st option, yod automatically places the application
per available resources.

8.3 Memory Available to Catamount Applications

S-2396-20

When running large applications on a dual-core processor system, it is important
to understand how much memory will be available per node for your job.

If you are running in single-core mode on a dual-core system, Catamount (the
kernel plus the process control thread (PCT)) uses approximately 120 MB of
memory. The remaining memory is available for the user program executable,
user data arrays, the stack, libraries and buffers, and SHMEM symmetric stack
heap.

For example, on a node with 2.147 GB of memory, memory is allocated as
follows:

Catamount 120 MB (approximate)

Executable, data arrays, stack, libraries and 2027 MB (approximate)
buffers, SHMEM symmetric stack heap

If you are running in dual-core mode, Catamount uses approximately 120 MB
of memory (the same as for single-core mode). The PCT divides the remaining
memory in two, allocating half to each core. The memory allocated to each core
is available for the user executable, user data arrays, stack, libraries and buffers,
and SHMEM symmetric stack heap.

61

Cray XT™ Series Programming Environment User's Guide

For example, on a node with 2.147 GB of memory, memory is allocated as

follows:
Catamount 120 MB (approximate)
Executable, data arrays, stack, libraries and 1013 MB (approximate)
buffers, SHMEM symmetric stack heap for core
0
Executable, data arrays, stack, libraries and 1013 MB (approximate)
buffers, SHMEM symmetric stack heap for core
1

The default stack size is 16 MB.

The memory used for the Lustre and MPI libraries is as follows:

Lustre library 17 MB (approximate)
MPI library and default buffer 72 MB (approximate)

You can change MPI buffer sizes and stack space from the defaults by setting
certain environment variables or yod options. For more details, see the yod(1)
andintro_npi nman(3) pages.

8.4 Launching an MPMD Application

The yod utility supports multiple-program, multiple-data (MPMD) applications
of up to 32 separate executable images. To run an MPMD application under

yod, first create a loadfile where each line in the file is the yod command for one
executable image. To communicate with each other, all of the executable images
launched in a loadfile share the same MPI _COVM WORL D process communicator.

62 S-2396-20

Running Catamount Applications [8]

S-2396-20

The following yod options are valid within a loadfile:
-heap size

Specifies the number of bytes to reserve for the heap. The
minimum value of size is 16 MB. On dual-core systems, each core
is allocated size bytes.

-list processor-list

Lists the candidate compute nodes on which to run the
application, such as: -1 i st 42, 58, 64.. 100, 150. . 200. Use
the cnsel ect command with the - y option to generate the list.
See the cnsel ect (1) man page for details.

-shnmem size

Specifies the number of bytes to reserve for the symmetric heap
for the SHMEM library. The heap size is rounded up in order to
address physical page boundary issues. The minimum value of
size is 2 MB. On dual-core systems, each core is allocated size
bytes.

-size|-sz|-np n

Specifies the number of processors on which to run the
application. In SN mode, - si ze n is the number of nodes. In
VN mode, - si ze n is the number of cores. You can use the

- Si ze option in conjunction with the - | i st option to launch an
application on a subset of the -list processor-list nodes.

-stack size

Specifies the number of bytes to reserve for the stack. On
dual-core systems, each core is allocated size bytes.

This loadfile script launches pr ogr aml on 128 nodes and pr ogr an® on 256
nodes:

#l oadfil e
yod -sz 128 programl
yod -sz 256 progran?

To launch the application, use:

% yod -F |l oadfile

63

Cray XT™ Series Programming Environment User's Guide

8.5 Managing Compute Node Processors from an MPI Program

Programs that use MPI library routines for parallel control and communication
should call the MPI _Fi nal i ze() routine at the conclusion of the program.
This call waits for all processing elements to complete before exiting. However,
if one of the processes fails to start or stop for any reason, the program never
completes and yod stops responding. To prevent this behavior, use the yod
-tlimt option to terminate the application after a specified number of seconds.
For example,

% yod -tlimt 30K nyprogl

terminates all processes remaining after 30K (30 * 1024) seconds so that

MPI _Finalize() can complete. You can also use the environment variable
YOD Tl ME_LI M T. The time limit specified on the command line overrides the
value specified by the environment variable.

8.6 Input and Out Modes under yod

All standard 170 requests are funneled through yod. The yod utility handles
standard input (st di n) on behalf of the user and handles standard output
(st dout) and standard error messages (st dout) for user applications.

For other 1/0 considerations, see Section 4.3.2, page 31.

8.7 Signal Handling under yod

64

The yod utility uses two signal handlers, one for the load sequence and one for
application execution. During the load operation, any signal sent to yod during
the load operation terminates the operation. After the load is completed and
all nodes of the application have signed in with yod, the second signal handler
takes over.

During the execution of a program, yod interprets most signals as being intended
for itself rather than the application. The only signals propagated to the
application are SI GUSR1, SI GUSR2, and SI GTERM All other signals effectively
terminate the running application. The application can ignore the signals that
yod passes along to it; SI GTERM for example, does not necessarily terminate an
application. However, a SI G NT delivered to yod initiates a forced termination
of the application.

S-2396-20

Running Catamount Applications [8]

8.8 Associating a Project or Task with a Job Launch

S-2396-20

Use the - Account " project task" or - A " project task" yod option or the - A
" project task" qsub option to associate a job launch with a particular project
and task. Use double quotes around the string that specifies the project and,
optionally, task values. For example:

% yod -Account "grid_test_1234 taskl" -sz 16 nyappl23

You can also use the environment variable XT_ACCOUNT=" project task" to specify
account information. The - Account or - A option overrides the environment

variable.

If yod is invoked from a batch job, the gsub - A account information takes
precedence; yod writes a warning message to st der r in this case.

65

Cray XT™ Series Programming Environment User's Guide

66 S-2396-20

Using PBS Pro [9]

Your Cray XT series Programming Environment may include the optional PBS
Pro batch scheduling software package from Altair Grid Technologies. This
section provides an overview of job processing under PBS Pro.

The Cray XT series system can be configured with a given number of interactive
job processors and a given number of batch processors. A job that is submitted as
a batch process can use only the processors that have been allocated to the batch
subsystem. If a job requires more processors than have been allocated for batch
processing, it remains in the batch queue but never exits.

Note: At any time, the system administrator can change the designation of any
node from interactive to batch or vice versa. However, this does not affect jobs
already running on those nodes. It applies only to jobs that are in the queue
and to subsequent jobs.

The basic process for creating and running batch jobs is to create a PBS Pro job
script that includes apr un or yod commands and then use the PBS Pro qsub
command to run the script.

9.1 Creating Job Scripts

A job script may consist of directives, comments, and executable statements.
A PBS Pro directive provides a way to specify job attributes apart from the
command line options:

#PBS -N job name

#PBS -| resource type=specification
#

command

command

PBS Pro provides a number of resource_type options for specifying, allocating,
and scheduling compute node resources, such as nppwi dt h (number of
processing elements), nppdept h (number of threads), and nppnodes
(manual node placement list). See Table 6, page 68, Table 7, page 69, and the
pbs_resour ces(7B) man page for details.

S-2396-20 67

Cray XT™ Series Programming Environment User's Guide

9.2 Submitting Batch Jobs

To submit a job to the batch scheduler, use the following commands:

% nodul e | oad pbs
% qsub [-| resource type=specification] jobscript

where jobscript is the name of a job script that includes one or more apr un or
yod commands.

The gsub command scans the lines of the script file for directives. An initial
line in the script that begins with the characters #! or the character: isignored
and scanning starts at the next line. Scanning continues until the first executable
line (that is, a line that is not blank, not a directive line, nor a line whose first
non-white-space character is #). If directives occur on subsequent lines, they
are ignored.

If a gsub option is present in both a directive and on the command line, the
command line takes precedence. If an option is present in a directive and not on
the command line, that option and its argument, if any, are processed as if you
included them on the command line.

9.2.1 Using apr un with qsub

For CNL jobs, the gsub - | resource_type=specification options and apr un options
are defined as follows:

Table 6. apr un versus gsub Options

apr un option gsub -1 option Description
-n 4 -1 nppw dt h=4 Width (number of PEs)
-d 2 -1 mppdept h=2 Depth (number of OpenMP threads)
-N 1 -1 nppnppn=1 Number of PEs per node
-L 5,6,7 -1 nppnodes=\"5,6, 7\'" Node List
-m 1000m -1 nmpprmem=1000nb Memory per PE
For examples of batch jobs that use apr un, see Chapter 13, page 95.
68 S-2396-20

Using PBS Pro [9]

9.2.2 Using yod with gsub

On a single-core system, the PBS Pro mppwidth parameter is equivalent to the
yod sz option.

On a dual-core system, the PBS Pro mppwidth parameter is not equivalent to the
yod sz option. The PBS Pro mppwidth parameter refers to the number of nodes
to be allocated for a job. The yod sz option refers to the number of cores to be
allocated for a job (two cores per node).

For example, the following commands:

% qsub -1 -V -1 nppw dt h=6
% yod -size 12 -VN progl

allocate 6 nodes to the job and launch pr ogl on both cores of each of the 6 nodes.

For Catamount jobs, the gsub - | resource_type=specification options and yod
options are defined as follows:

Table 7. yod versus qsub Options

yod option gsub -1 option Description

-sz 4 -1 nmppwi dt h=4 Number of processors (single core)
-VN -sz 8 -1 nmppwi dt h=4 Number of processors (dual core)
-list 5,6,7 -1 nmppnodes=\"5,6, 7\" Node List

For examples of batch jobs that use yod, see Chapter 14, page 133.

9.3 Terminating Failing Processes in an MPI Program

S-2396-20

Jobs that use MPI library routines for parallel control and communication should
call the MPI _Fi nal i ze() routine at the conclusion of the program. This call
waits for all processing elements to complete before exiting. However, if one of
the processes fails to start or stop for any reason, the program never completes
and apr un or yod stops responding. To prevent this behavior, use the PBS

Pro time limit to terminate remaining processes so that MPl _Fi nal i ze() can
complete.

69

Cray XT™ Series Programming Environment User's Guide

9.4 Getting Jobs Status

70

% qst at
Job id Nane

The gst at command displays the following information about all jobs currently
running under PBS Pro;

= The job identifier (Job i d) assigned by PBS Pro

« The job name (Nane) given by the submitter

« The job owner (User)

e CPU time used (Ti ne Use)

= The job state (S): whether job is exiting (E), held (H), in the queue (Q), running
(R), suspended (S), being moved to a new location (T), or waiting for its
execution time (W

= The queue (Queue) in which the job resides

84. ni dO0003 test _ost4 7
33. ni d0O0003 run. pbs

34. ni d0O0003 run. pbs
35. ni d00003 STDI N

%qgstat -a
ni d00003:

For example:
User Time Use
usera 03: 36: 23
userb 00: 04: 45
userb 00: 04: 45
userc 00: 03: 10

If the - a option is used, queue information is displayed in the alternative format.

Job | D Usernane Queue

163484 usera
163533 userb
163534 userb
163536 userc

Jobnane Sessl| D

test_ost4_ 9143

run. pbs 15040
run. pbs 15045
STDI N 15198

Total generic conpute nodes allocated: 197

Tine In

Queue

Req'd Req'd El ap
Nodes Tinme S Tine

64 -- R 03:47
64 00:30 R 00: 15
64 00: 30 R 00: 15
5 -- R 00:09

For details, see the gst at (1B) man page.

S-2396-20

Using PBS Pro [9]

9.5 Removing a Job from the Queue

S-2396-20

The gdel command removes a PBS Pro batch job from the queue. As a user, you
can remove any batch job for which you are the owner. Jobs are removed from
the queue in the order they are presented to gdel . For more information, see the
gdel (1B) man page and the PBS Pro User Guide.

71

Cray XT™ Series Programming Environment User's Guide

72 S-2396-20

Debugging an Application [10]

This chapter describes some of the debugging options that are native to the

Cray XT series Programming Environment, as well as the optional TotalView
debugging software package from TotalView Technologies, LLC and the GNU
gdb debugger.

10.1 Troubleshooting Catamount Application Failures

S-2396-20

The yod utility provides rudimentary diagnostics for a subset of compute node
operating system calls. The subset consists of the following system calls, which

perform remote procedure calls (RPCs) to yod:

Table 8. RPCs to yod

chnod
chown
cl ose
exit

f chmod
f chown
fstat

fstatfs

fsync
ftruncate
getdirentries
l'ink

| seek

| st at

nkdi r
open

pr ead
pwite
read
readl i nk

renane

rdir
setegid
seteuid
setgid
setuid
st at

statfs

synl i nk
sync
truncate
umask
unl i nk
utines

wite

System calls that are performed solely by Catamount do not show up in the
diagnostic output.

There are two ways to enable this feature:

= Invoke yod with the - st r ace option.

= Set YOD_STRACE=1 in your shell environment.

Note: In this context the term strace is a misnomer. The yod utility does

not provide the UNIX-like st race() function. Enabling st r ace turns on
diagnostic output generated by the RPC library, which yod uses to service the
system calls listed previously. The 1/0-related system calls are for non-parallel
file systems.

73

Cray XT™ Series Programming Environment User's Guide

The yod command also enables you to get trace reports about memory
allocation and deallocation. The -t racenal | oc option provides rudimentary
diagnostics for mal | oc() and free() calls. This information can help you
pinpoint memory leaks and determine if using the GNU malloc library would be
beneficial. For further information about the GNU malloc library, see Appendix
B, page 187.

10.2 Using the TotalView Debugger

Cray XT series systems support the TotalView debugger. TotalView is an
optional product that provides source-level debugging of applications running
on multiple compute nodes. TotalView is compatible with the PGI, GCC, and
PathScale compilers.

TotalView:

= Provides both a graphical user interface and a command-line interface (with
command-line help).

= Supports the x86-64 Assembler.

= Supports programs written in mixed languages.

= Supports debugging of up to 4096 compute node processes.
= Supports watchpoints.

= Provides a memory debugger.

TotalView typically is run interactively. If your site has not designated any
compute nodes for interactive processing, use the PBS Pro qsub - | interactive
mode described in Chapter 9, page 67.

For further information about the TotalView graphical and command line
interfaces, see the t ot al vi ew(1) man page. For further information about
TotalView, including details about running on a Cray XT series system, see
http://ww.total vi ewt ech. conl Docunent ati on.

10.2.1 Debugging an Application

74

To debug a CNL application, use this command format to launch an instance of
apr un, which in turn launches the application executable_name:

%total view aprun -a [other aprun arguments] ./ executable name

S-2396-20

http://www.totalviewtech.com/Documentation

Debugging an Application [10]

S5-2396-20

Note: The - a option is a TotalView option indicating that the arguments that
follow apply to apr un. If you want to use the apr un - a arch option, you

need to include a second - a, as in:

%total view aprun -a -a xt -n 2 ./a.out

For example, to debug application xt 1, use;

%totalview aprun -a -n 2 ./xtl
The TotalView Root and Process windows appear.

TotalView 8.2.0-0
Help

Edit Wiew Tools Window
Host Status | Description !

ID/.| Rank
aprun (1 active threads)

aprun<=t1=0 {1 active threads) '

aprun==t1=1 {1 active threads)

<local= B
=

1 nidddas:z T

Figure 1. TotalView Root Window

75

Cray XT™ Series Programming Environment User’'s Guide

| aprun<xti=.0 = AR
File Edit “iew Group Process Thread Action Point Tools Window Help
Group (Contral) _*'l } 'I ﬂ I’ 5 g §
Go Halt Kill Restat | Mest Step Cut | Bun To
Rank 0: aprun==t1=0 (Stopped)
G s * 00s7): Stoppes)
Stack Trace il Stack Frame
_ lihe read, FE=TEEEFEEEcOR0 | b |- 15
cnos_get nidpid map, FP=TELffffffcd Registers for the frame: _|
cnos_barrier, Fp=Tfffffffeadl
PMI Barrier, FP=TEfELE££d2E0 Frax: Dxfffffffffififel
MPIDI Portals Init, FP=TEffffffda7 zrdx: 0x00000018 (24)
MPID Init, FP=TEfE£E£££d3d0 grex: OxEffffffffffify
MPIE TInit_thread, FP=TEffffffdd1n gZrhx: 0x006d6760 (7169
BMPI Init, FP=TEfEffE£££d430 %rzi: Ox006deceD (7203
pmpi_init_, FE=TEfffffEd440 zrdi: Ox00000068 (104)
MAIN , FP=TEfEfE£££d470 Frhp: OxTEEE£fffcOb0 (
mairn, FE=TEfffE££d490 grap: Ox7EEE£FffcI68 (
[| Tahe b+ va—ae TN-TFFFFFFEAC-N f‘ -, Nxnnnd C2301 rocan
Function MAIN_ =] =]
000434006 - 000 Y
0x0043d007 : 075 jne Ox43d01E
0x00434008 : 016
02200434009 0x48 mowl 50, grax
Oz0043d00=: OxcT
05x0043d00b : e
0x0043d00c: 0300
0x00434004 : 0300
0x0043d00e : 0300
05x0043d00F - 000
000434010 0xz0f syscall
000434011 : 005 -
=5 Oze0043d012 Oxd42 cmpl 5-4095, Frax
000434013 : Ox3d
000434014 : 0x01
000434015 : 0x=£0
0z=0043d016: Oxff
000434017 : Oxff
000434018 0xz0f jae _ syscall error
000434019 : 083
Oz=0043d01=: 0x82
00043d01b: 0xE89
Oz0043d01c: 0x=01 ¥
] [
Action Pnints] Prgcesses] Th[eads] (-] [F+] [T=] [T=]
A
]

Figure 2. TotalView Process Window

76

S5-2396-20

Debugging an Application [10]

To debug a Catamount application, substitute yod for apr un in the t ot al vi ew
command.

10.2.2 Debugging a Core File

To debug a core file, from the Process window File menu, select New Program.
A New Program window appears. Click the Open a core fileicon. Under the
Program tab, specify the application name in the Program: field and the core file
name in the Core file: field. Click OK.

E MNew Program =
% Erngram] ﬂrguments] Standard IIO] Paral_lel]
' Program: | Aus/nid00007/useras-t! _,l Browse... |
Start a new
process On host | {local) A

i ﬁ Core file: ||:|:|re Browse. .. |

Attach to
process

Open a
core file

(8],:9 | Canc:ell Help |

Figure 3. Debugging a Core File

S5-2396-20 77

Cray XT™ Series Programming Environment User’'s Guide

10.2.3 Attaching to a Running Process

78

po

g
'E"*.

Start a new
process

Attach to
process

&

Open a
core file

To attach TotalView to a running process, you must be logged in to the same
login node that you used to launch the process, and you must attach to the
instance of apr un that was used to launch the process, rather than to the process

itself. To do so, follow these steps:
1. Launch TotalView:

% total view

2. In the New Program window, click the Attach to an existing process icon.
The list of processes currently running displays.

MNew Program

Erngram] ﬂrguments] Staneardg IIO] Paral_lel]

Frogram: |fusrfhinfaprun _‘"l Bronwwse. .. |
On host | (local =
FID: |
Select processes to aftach to: select All | Refrash |
Program | Host | Path State | PID | PPID |
sshd nid 00004 5 BEE1 BBV
' 5 BEGz BEGT

t_ESh nid00004

Filter by program or path: |

Clear

(8],:9 |

Cancel |

[_Clear]
Help |

Figure 4. Attaching to a Running Process

S5-2396-20

Debugging an Application [10]

3. Select the instance of apr un you want, and click OK. TotalView displays a
Process Window showing both apr un and the program threads that were
launched using that instance of apr un.

10.2.4 Altering Standard I/O

To change the names of the files to which TotalView will write or from which
TotalView will read, Launch the program using TotalView. Do not specify the
st di n file at this time. Use:

%total view aprun -a -n pes program name

The TotalView Root and Process windows display. In the Process window under
the File menu, select New Program. The New Program window displays. Select
the Standard 170 tab. The Standard Input, Standard Output, and Standard Error
fields are displayed.

S-2396-20 79

Cray XT™ Series Programming Environment User’'s Guide

i} New Program X

é:ﬁ} Erngram] ﬂrguments] Standard /O F'aral_lel]
it _! standard Input

AL Read from ﬂle.l Bronwse. |

Attach to | Standard Qutput

process Vivite 1o file: Browse... | 0 Append

| Standard Error

Open a
core file

& Same as outpul

® Wit to file: | Browse... | O Append

(8],:9 | Canc:ell Help |

Figure 5. Altering Standard 1/0

Type the file name for Standard Input,Standard Output, or Standard Error field,
specify the desired file name, and click the OK button.

On the main TotalView window, click the Go button to begin program execution.

80 S5-2396-20

Debugging an Application [10]

10.2.5 TotalView Limitations for Cray XT Series Systems

The TotalView debugging suite for the Cray XT series system differs in
functionality from the standard TotalView implementation in the following ways:

= The TotalView Visualizer is not included.
= Debugging multiple threads on compute nodes is not supported.

= Debugging MPI _Spawn(), OpenMP, or Cray SHMEM programs is not
supported.

= Compiled EVAL points and expressions are not supported.

= Type transformations for the PGl C++ compiler standard template library
collection classes are not supported.

= Exception handling for the PGI C++ compiler run time library is not
supported.

= Spawning a process onto the compute processors is not supported.

= Machine partitioning schemes, gang scheduling, or batch systems are not
supported.

In some cases, TotalView functionality is limited because CNL or Catamount
does not support the feature in the user program.

10.3 Using the GNU gdb Debugger

Cray XT series supports the GNU Project debugger, gdb, for single-process
debugging on Catamount compute nodes; gdb is not supported for CNL
compute nodes.

Use the cc, CC, ftn,orf 77 - g debug option to generate debugging information.
This information describes the data type of each variable or function and the
correspondence between source line numbers and addresses in the executable
code.

For an example showing how to use xt gdb to set breakpoints in a single-process
job, see Example 38, page 154.

For details, see the xt gdb(1), cc(1), CC(1), f 77(1), and f t n(1) man pages.

S-2396-20 81

Cray XT™ Series Programming Environment User's Guide

82 S-2396-20

Performance Analysis [11]

This chapter describes the Cray XT series performance analysis tools.

11.1 Using the Performance API

The Performance API (PAPI) is a standard API for accessing microprocessor
registers that count events or occurrences of specific signals related to the
processor's function. By monitoring these events, you can determine the extent to
which your code efficiently maps to the underlying architecture.

PAPI provides two interfaces to the counter hardware:
= A high-level interface for basic measurements

= A fully programmable, low-level interface for users with more sophisticated
needs

PAPI supports multiplexing under CNL. Although it is also supported under
Catamount, the long time slice (~1 second) for each set of independent counters
makes it impractical to use except for very long running programs.

The pat _bui | d utility does not allow you to instrument a program that is also
using the PAPI interface directly or indirectly (via |l i bhwpc).

To use PAPI, you must load the PAPI module.
For CNL applications, use:

% nodul e | oad papi -cnl

For Catamount applications, use:

% nodul e | oad papi

For more information about PAPI, see htt p: //i cl . cs. ut k. edu/ papi /.

11.1.1 Using the High-level PAPI Interface

S-2396-20

The high-level interface provides the ability to start, stop, and read specific
events, one at a time. For an example of a CNL application using the PAPI
high-level interface, see Example 17, page 114. For an example of a Catamount
application using the PAPI high-level interface, see Example 39, page 155.

83

http://icl.cs.utk.edu/papi/

Cray XT™ Series Programming Environment User's Guide

11.1.2 Using the Low-level PAPI Interface

The low-level PAPI interface deals with hardware events in groups called event
sets. An event set maps the hardware counters available on the system to a set

of predefined events, called presets. The event set reflects how the counters are
most frequently used, such as taking simultaneous measurements of different
hardware events and relating them to one another. For example, relating cycles to
memory references or flops to level-1 cache misses can reveal poor locality and
memory management.

Event sets are fully programmable and have features such as guaranteed thread
safety, writing of counter values, multiplexing, and notification on threshold
crossing, as well as processor-specific features. For the list of predefined event
sets, see the hwpc(3) man page.

For an example of a CNL application using the PAPI low-level interface, see
Example 18, page 115. For an example of a Catamount application using the PAPI
low-level interface, see Example 40, page 156.

For information about constructing an event set, see the PAPI User Guide and the
PAPI Programmer’s Reference manual.

For a list of supported hardware counter presets from which to construct an event
set, see Appendix C, page 193.

11.2 Using the Cray Performance Analysis Tool

84

The Cray Performance Analysis Tool (CrayPat) helps you analyze the
performance of programs. To use it:

1. Load the cr aypat module:
% nmodul e | oad craypat

Note: You must load the cr aypat module before building even the
uninstrumented version of the application.

2. Compile and link your application.

Note: All executable programs previously created with the CrayPat 3.1
module must be relinked in order to be instrumented with CrayPat 3.2.
The pat _bui | d utility in CrayPat 3.2 will not instrument executable files
linked with the CrayPat 3.1 module loaded.

S-2396-20

Performance Analysis [11]

S-2396-20

3. Use the pat _bui | d command to create an instrumented version of the

application, specifying the functions to be traced through options such as
-uand-g npi.

. Set any relevant environment variables, such as:

e setenv PAT_RT_HWPC 1, which specifies the first of the nine
predefined sets of hardware counter events.

e setenv PAT_RT_SUMMARY 0, which specifies a full-trace data file rather
than a summary. Such a file can be very large but is needed to view
behavior over time with Cray Apprentice2.

e setenv PAT_BU LD _ASYNC 1, which enables you to instrument a
program for a sampling experiment.

e setenv PAT_RT_EXPFI LE DI Rdir, which enables you to specify a
directory into which the experiment data files will be written, instead of
the current working directory. If a single data file is written, its default
root name is the name of the instrumented program followed by the
plus sign (+), the process ID, and one or more key letters indicating the
type of the experiment (such as pr ogr anil+pat +3820t dt). If there is
a data file from each process, they are written into a subdirectory with
that name. For a large number of processes, it may be necessary that
PAT_RT_EXPFI LE_MAX be set to 0 or the number of processes and that
PAT_RT_EXPFI LE_DI Rbe set to a directory in a Lustre file system (if the
instrumented program is not invoked in such a directory). The default for
a multi-PE program is to write a single data file.

. Execute the instrumented program.

. Use pat _report on the resulting data file to generate a report. The default

report is a sample by function, but alternative views can be specified through
options such as:

e -Ocalltree
e -Ocallers
e -0l oad_bal ance

The -s pe=... option overrides the way that per-PE data is shown in
default tables and in tables specified using the - Ooption. For details, see the
pat _report (1) man page.

85

Cray XT™ Series Programming Environment User's Guide

These steps are illustrated in the example CrayPat programs (see Chapter 13,
page 95 and Chapter 14, page 133). For more information, see the man pages
and the interactive pat _hel p utility.

Note: CrayPat does not support the PathScale - f b- cr eat e, - f b- phase, or
-pg compiler options.

For more information about using CrayPat, see the Using Cray Performance
Analysis Tools manual, the cr aypat (1) man page, and run the pat _hel p utility.
For more information about PAPI HWPC, see Appendix C, page 193, the hwpc(3)
man page, and the PAPI website athtt p: / /i cl . cs. ut k. edu/ papi /.

11.2.1 Tracing and Sampling Experiments

86

CrayPat supports two types of experiments: tracing and sampling.

Tracing counts an event, such as the number of times an MPI call is executed.
When tracing experiments are done, selected function entry points are traced
and produce a data record in the run time experiment data file, if the function is
executed. The following categories of function entry points can be traced:

System calls

170 (formatted and buffered or system calls)
Math (see mat h. h)

MPI

SHMEM

Dynamic heap memory

BLAS

LAPACK

Pthreads (not supported on Catamount)

Note: Only true function calls can be traced. Function calls that are inlined by

the compiler cannot be traced.

Sampling experiments capture values from the call stack or the program
counter at specified intervals or when a specified counter overflows. (Sampling
experiments are also referred to as asynchronous experiments).

S-2396-20

http://icl.cs.utk.edu/papi/

Performance Analysis [11]

Supported sampling functions are:

= sanp_pc_pr of , which provides the total user time and system time
consumed by a program and its functions (not supported on Catamount).

= sanp_pc_ti nme, which samples the program counter at a given time interval.
This returns the total program time and the absolute and relative times each
program counter was recorded.

= sanp_pc_ovfl, which samples the program counter at a given overflow
of a hardware performance counter.

= sanp_cs_ti ne, which samples the call stack at a given time interval and
returns the total program time and the absolute and relative times each call
stack counter was recorded (otherwise identical to the sanp_pc_ti me
experiment).

= sanp_cs_ovfl, which samples the call stack at a given overflow of a
hardware performance counter (otherwise identical to the sanp_pc_ovf |
experiment).

e sanp_ru_tinme, which samples system resources at a given time interval
(otherwise identical to the sanp_pc_t i ne experiment).

= sanp_ru_ovfl, which samples system resources at a given overflow of a
hardware performance counter (otherwise identical to the sanp_pc_ovf |
experiment.)

< sanp_heap_ti me, which samples dynamic heap memory management
statistics at a given time interval (otherwise identical to the sanp_pc_ti ne
experiment).

e sanp_heap_ovfl, which samples dynamic heap memory management
statistics at a given overflow of a hardware performance counter (otherwise
identical to the sanp_pc_ovfl experiment).

Note: Hardware counter information cannot be collected during any type of
sampling on a Catamount system and cannot be collected during sampling
by overflow on a CNL system. Recommended practice is to use sampling to
obtain a profile and then trace the functions of interest to obtain hardware
counter information for them.

S-2396-20 87

Cray XT™ Series Programming Environment User's Guide

11.3 Using Cray Apprentice2

Cray Apprentice? is a performance data visualization tool. You can run

Cray Apprentice2 on a Cray XT series system or Cray Apprentice2 Desktop on
a standalone Linux machine. After you have used pat _bui | d to instrument
a program for a performance analysis experiment, executed the instrumented
program, and used pat _r eport to convert the resulting data file to a

Cray Apprentice2 data format, you can use Cray Apprentice2 to explore the
experiment data file and generate a variety of interactive graphical reports.

To run Cray Apprentice2, load the Cray Apprentice2 module, run pat _r eport,
then use the app2 command to launch Cray Apprentice2;

% nodul e | oad apprentice2
% app2 [--limt tag count | --limt_per_pe tag count] [data files]

Use the pat _report -f ap2 option to specify the data file type.

To create a graphical representation of a CrayPat report, use an experiment file to
generate a report in XML format.

For example, using experiment file pr ogr aml+pat +2511t d, generate a report
in XML format (note the inclusion of the - f ap2 option):

% nodul e | oad apprentice2
% pat _report -f ap2 progranil+pat +2511td
Qutput redirected to: progranil+pat+2511td. ap2

Run Cray Apprentice2:

% app2 progranil+pat +2511td. ap2

88 S-2396-20

Performance Analysis [11]

Cray Apprentice2 displays pat _r eport data in graphical form. This example
shows the Function display option:

Apprentice? 3.1 [=1[=1[x=]
Eile Help

wprograml+pat+2511td.ap2 |

@eTE R

w Overview | w Call Graph wFunction |vEn1urirnnment|vText Repcrtl
Time| Parcant| Hits| canisites| imbatance %| 2™ ™! £ynction s
Savings

0.000710 96.15 1000 1 55 31 0.00 work_

0.000010 1.36 4 1 4.54 0.00 mpi_init_

0.000007 0.97 4 1 1.68 0.00 mpi_comm_size_

0.000006& 0.82 4 1 6.07 0.00 mpi_comm_rank_

0.000005 071 4 1 21.68 0.00 mpi_finalize_

0.000000 0.00 0 0 0.00 MPI_Abort

0.000000 0.00 0 0 0.00 MPI_Comm_rank

0.000000 0.00 0 0 0.00 MPL_Allreduce

0.000000 0.00 0 0 0.00 MPI_Comm_size -]
£l | 3]

Figure 6. Cray Apprentice2 Function Display

For more information about using Cray Apprentice2, see the Cray Apprentice2
online help system and the app2(1) and pat _r eport (1) man pages.

S-2396-20 89

Cray XT™ Series Programming Environment User's Guide

90 S-2396-20

Optimization [12]

12.1 Using Compiler Optimization Options

S-2396-20

After you have compiled and debugged your code and analyzed its performance,
you can use a number of techniques to optimize performance. For details

about compiler optimization and optimization reporting options, see the PGI
User's Guide, the Using the GNU Compiler Collection (GCC) manual, or the QLogic
PathScale Compiler Suite User Guide.

Optimization can produce code that is more efficient and runs significantly
faster than code that is not optimized. Optimization can be performed at the
compilation unit level through compiler driver options or to selected portions

of code through the use of directives or pragmas. Optimization may increase
compilation time and may make debugging difficult. It is best to use performance
analysis data to isolate the portions of code where optimization would provide
the greatest benefits.

In the following example, a Fortran matrix multiply subroutine is optimized. The
compiler driver option generates an optimization report.

Source code of matri x_nmnul ti ply. f90:

subroutine nxm(x,y, z, mn)
real *8 x(mn), y(mn), z(n,n)

x(i,0) +y(ik)*z(k, j)

end
PGI Fortran compiler command:

%ftn -c -fast -Mectsse -Mnfo matrix_nultiply.f90

91

Cray XT™ Series Programming Environment User's Guide

Optimization report:

mxm
4, Interchange produces reordered | oop nest: 5, 4, 6
6, Generated 3 alternate loops for the inner |oop

Gener ated vector sse code for inner |oop
Generated 2 prefetch instructions for this |oop
Gener ated vector sse code for inner |oop
Generated 2 prefetch instructions for this |oop
Gener ated vector sse code for inner |oop
Generated 2 prefetch instructions for this | oop
Gener ated vector sse code for inner |oop
Generated 2 prefetch instructions for this |oop

12.2 Optimizing Applications Running on Dual-core Processors

Because dual-core systems can run more tasks simultaneously, overall system
performance can increase. The trade-offs are that each core has less local memory
(because it is shared by the two cores) and less system interconnection bandwidth
(which is also shared).

12.2.1 MPIl and SHMEM Applications Running under Catamount

92

By default, processes are placed in rank-sequential order, first on the master core
(core 0) on each node and then on the subordinate core (core 1) on each node. So,
for a 100-core, 50-node job, the layout of ranks on cores is:

Node 1 Node 2 Node 3 Node 50
Core 0 1 0 1 0 1 0 1
Rank 0 50 1 51 2 52 49 99

Latency times for data transfers between parallel processes can vary
according to the type of process-to-core placement: master-to-master,
subordinate-to-subordinate, master-to-subordinate on different nodes, and
master-to-subordinate on the same node. Master-to master transfers have the
shortest latency; subordinate-to-subordinate transfers have the longest latency.

MPI and SHMEM are not aware of the processor placement topology. As a result,
some applications may experience performance degradation.

S-2396-20

Optimization [12]

To attain the fastest possible run time, try running your program on the master
core of each allocated node. The subordinate cores are allocated to your job but
idle.

For example, the command:
% yod -sz 64 progl
launches pr og1 on the master core of each of 64 nodes.

The MPI CH_RANK REORDER METHOD environment variable allows you to
override the default rank ordering scheme and use an SMP-style placement, a
folded-rank placement, or a custom rank placement. See the i nt r o_npi (3) man
page for details.

12.2.2 MPIl and SHMEM Applications Running under CNL

Processes are placed in packed rank-sequential order, starting with the first node.
So, for a 100-core, 50-node job, the layout of ranks on cores is:

Node 1 Node 2 Node 3 Node 50
Core 0 1 0 1 0 1 0 1
Rank 0 1 2 3 4 5 98 99

Note: You can use the yod placement method (rank-sequential order) instead
by setting MPI CH_RANK_REORDER METHOD to O.

To attain the fastest possible run time, try running your program on only one core
of each node. (In this case, the other cores are allocated to your job but idle.) This
allows each process to have full access to the system interconnection network.

For example, the command:
% aprun -n 64 -N 1 ./progl

launches pr ogl1 on one core of each of 64 dual-core nodes.

S-2396-20 93

Cray XT™ Series Programming Environment User's Guide

94 S-2396-20

Example CNL Applications [13]

S-2396-20

This chapter gives examples showing how to compile, link, and run CNL
applications.

Verify that your work area is in a Lustre-mounted directory. Then use the
nmodul e |i st command to verify that the correct modules are loaded.
Whenever you compile and link applications to be run under CNL, you need to
have the - cnl module loaded. Each following example lists the modules that
have to be loaded.

Example 3: Basics of running a CNL application

This example shows how to use the PGI C compiler to compile an MPI program
and apr un to launch the executable.

Modules required:

Pr gEnv- pgi
xt pe-target-cnl

Create a C program, si npl e. c:

#i ncl ude "npi . h"

int main(int argc, char *argv[])
{
int rank;
i nt nunprocs;
MPI _I nit(&argc, &rgv);
MPI _Comm r ank(MPI _COVM WORLD, &r ank) ;
MPI _Conmm si ze(MPI _COVM WORLD, &unpr ocs) ;

printf("hello frompe % of %\ n",rank, nunprocs);
MPI _Finalize();
}

Compile the program:
%cc -o sinple sinple.c
Run the program on six processing elements.

% aprun -n 6 ./sinple

95

Cray XT™ Series Programming Environment User's Guide

The output to st dout will be similar to this:

hello frompe 0 of 6
hello frompe 1 of 6
hello frompe 2 of 6
hello frompe 4 of 6
hello frompe 5 of 6
hello frompe 3 of 6
Application 106504 resources: utinme 0, stinme O

Example 4: Basics of running an MPI application

This example shows how to compile, link, and run an MPI program. The MPI
program distributes the work represented in a reduction loop, prints the subtotal
for each PE, combines the results from the PEs, and prints the total.

Modules required:

Pr gEnv- pgi
Xt pe-target-cnl

Create a Fortran program, r educe. f 90:

program r educe
i nclude "npif.h"

integer n, nres, ierr

call MPI _INIT (ierr)

call MPI _COMM RANK (MPI _COVM WORLD, nype, ierr)
call MPI_COWMM SI ZE (MPI _COVM WORLD, npes, i err)

nres =0
n=2~0

do i =nype, 100, npes

n=mn+i
enddo

print *, 'MW PE', nype, ' M part:',n
cal | MPI_REDUCE (n, nres, 1, Ml _| NTEGER, MPI _SUM 0, MPI _COMM WORLD, i err)

if (mype == 0) print *,' PE: ', nmype, ' Total is:',nres

96 S-2396-20

Example CNL Applications [13]

call MPI_FINALIZE (ierr)

end

Compile r educe. f 90;

% ftn -o reduce reduce.f90
Run the program on two PEs.

% aprun -n 2 ./reduce

My PE: 0 M part: 2550
My PE: 1 M part: 2500
PE: 0 Total is: 5050

Application 65539 resources: utine 0, stinme O
If desired, you could use this C version of the program:

[* programreduce */

#i ncl ude <stdio. h>
#i ncl ude "npi.h"

int main (int argc, char *argv[])
{
int i, sum nype, npes, nres, ret;
ret = MPl_Init (&rgc, &argv);
ret = MPI_Comm size (MPI_COW WORLD, &npes);
ret = MPI_Commrank (MPI_COW WORLD, &nype);
nres = 0O;
sum = 0;
for (i = nype; i <=100; i += npes) {
sum = sum + i;

}

(void) printf ("My PEE% M part: %\ n", mype, sun;
ret = MPI _Reduce (&sum &nres, 1, MPl _| NTEGER, MPI _SUM 0, MPI _COVM WORLD) ;

if (nype == 0)
{
(void) printf ("PE: %l Total is:%l\n",nype, nres);
}
ret = Ml _Finalize ();

S-2396-20 97

Cray XT™ Series Programming Environment User's Guide

98

Example 5: Running an MPI work distribution program

This example uses MPI solely to identify the processor associated with each
process and select the work to be done by each processor. Each processor writes

its output directly to st dout .

Module required:

Xt pe-target-cnl

Source code of Fortran main program (pr og. f 90):

program nain
include 'nmpif.h'

call MPI _Init(ierr) ! Required
call MPI_Comm rank(MPI _COWM WORLD, nype,ierr)
call MPI_Comm si ze(MPI _COW WORLD, npes, i err)

print *,"hello frompe', nype,' of',npes

do i =1+nype, 1000, npes ! Distribute the work
call work(i, mype)
enddo

call MPI_Finalize(ierr) ! Required
end

The C function wor k. ¢ processes a single item of work.
Source code of wor k. c:

#i ncl ude <stdio. h>

void work_(int *N, int *MYPE)

{

int n=*N, nype=* WPE;

if (n==42) {
printf("PE %: sizeof(long) = %\ n", nype, sizeof (1 ong));
printf("PE %: The answer is: %\n", nype,n);
}
}

Compile wor k. c:

%cc -c work.c

S-2396-20

Example CNL Applications [13]

S-2396-20

Compile pr og. f 90, load wor k. 0, and create executable pr ogr aml:
% ftn -o programl prog.f90 work.o

Run pr ogr aml on two PEs:

% aprun -n 2 ./prograni

Output from pr ogr aml:

hell o from pe 1 of 2
PE 1: sizeof(long) = 8

PE 1: The answer is: 42

hell o from pe 0 of 2
Appl i cation 106505 resources: utime 0, stime O

If you want to use a C main program instead of the Fortran main program,
compile pr og. c:

#i ncl ude <stdio. h>
#i ncl ude <npi . h> /* Required */

mai n(i nt argc, char **argv)
{
int i, mpe, npes;

MPI _Init(&argc, &rgv); /* Required */
MPI _Conmm r ank(MPI _COVM WORLD, &nype) ;

MPlI _Comm si ze(MPI _COVM WORLD, &npes) ;
printf("hello frompe % of %\ n", nype, npes);

for (i=1+nype; i<=1000; i+=npes) { /* distribute the work */
work_(& , &mype);
}

MPI _Finali ze(); /* Required */

99

Cray XT™ Series Programming Environment User's Guide

Example 6: Combining results from all processors using MPI

In this example, MPI combines the results from each processor. PE O writes the
output to st dout .

Module required:
Xt pe-target-cnl
Source code of Fortran main program (pr ogl. f 90):

program main
include 'nmpif.h'
i nteger workl

call MPI_Init(ierr)
call MPI_Comm r ank(MPI _COW WORLD, nype,ierr)
call MPI_Comm si ze(MPI _COW WORLD, npes, i err)

n=0

do i =1+nype, 1000, npes
n =n + work1(i, nype)

enddo

call MPI_Reduce(n,nres, 1, MPl _I NTEGER, MPI _SUM 0, MPI _COWM WORLD, i er)
if (nmype.eq.0) print *,'PE ,mype,': The answer is:',nres

call MPI_Finalize(ierr)
end

Source code of wor k1. c:

int workl (int *N, int *MYPE)
{

int n=*N, nype=* MYPE;

int mysum=0;

switch(n) {
case 12: mysumt=n;
case 68: nmysumt=n;
case 94: nysumt=n;,
case 120: nmnysunt=n;
case 19: mysum =n;
case 103: mysum =n;

100 S-2396-20

Example CNL Applications [13]

S-2396-20

case 53: nysum =n;
case 77: mysum =n;

}

return nmysum

}
Compile wor k1. ¢ and pr ogl. f 90:

%cc -c workl.c
% ftn -o progran? progl.f90 workl.o

To run pr ogr an® on 3 PEs, use:

% aprun -n 3 ./progran®
PE 0 : The answer is: -1184
Application 106506 resources: utinme 0, stinme O

If you want to use a C main program instead of the Fortran main program,
compile progl. c:

#i ncl ude <stdio. h>
#i ncl ude <npi . h>

mai n(int argc, char **argv)
{

int i, mpe,npes,n=0,res;

MPI _I nit(&argc, &rgv);
MPI _Cormm r ank(MPI _COVM WORLD, &mype) ;
MPI _Comm si ze(MPI _COVM WORLD, &npes) ;

for (i=nype; i<1000; i+=npes) {
n += workl (& , &mype);

}
MPI _Reduce(&n, & es, 1, MPl _I NT, MPI _SUM 0, MPI _COVM WORLD) ;
if (tnype) {
printf("PE %: The answer is: %\n", mype,res);
}
MPI _Finalize();

}

and link it with wor k1. o:

% cc -o progranB progl.c workl.o

101

Cray XT™ Series Programming Environment User's Guide

102

Example 7: Using the Cray shrmem put function

This example shows how to use the shrrem put 64() function to copy a
contiguous data object from the local PE to a contiguous data object on a different
PE.

Module required:
Xt pe-target-cnl
Source code of C program (shnent. c):

/*
* sinple put test
*/

#i ncl ude <stdi o. h>
#i nclude <stdlib. h>
#i ncl ude <npp/ shnem h>

/* Di mension of source and target of put operations */
#define DIM 1000000

long target[DIM;
long local [DIM;

mai n(i nt argc, char **argv)
{

register int i;

int ny_partner, ny_pe;

/* Prepare resources required for correct functionality
of SHVEM on XT3. Alternatively, shmem.init() could
be called. */

start_pes(0);

for (i=0; i<DIM i++) {

target[i] = OL;

local[i] = shmem.nmy_pe() + (i * 10);
}

ny_pe = shmem.ny_pe();

i f(shmem n_pes() %) ({
if(ny_pe == 0) printf("Test needs even nunber of processes\n");

S-2396-20

Example CNL Applications [13]

/* Clean up resources before exit. */
shnmem finalize();
exit(0);

}

shnmem barrier_all();

/* Test has to be run on two procs. */
my_partner = ny_pe %2 ? my_pe - 1 : ny_pe + 1;

shnem put 64(target, | ocal, D Mny_partner);

/* Synchroni ze before verifying results. */
shnmem barrier_all();

/* Check results of put */
for(i=0; i<DIM i++) {
if(target[i] != (ny_partner + (i * 10))) {
fprintf(stderr,"FAIL (1) on PE % target[%l] = % (%)\n",

shmem ny_pe(), i, target[i], ny_partner+(i*10));
shmem finalize();
exit(-1);

}
}

printf(" PE %l: Test passed.\n",ny_pe);

/* C ean up resources. */
shnmem finalize();

}

Compile shnent. ¢ and create executable shnmenl:
% cc -o shmenl shmemnl. c

Run shen:

% aprun -n 4 ./shnmeml
PE 0: Test passed.
PE 2: Test passed.
PE 3: Test passed.
PE 1: Test passed.
Application 106507 resources: utinme 0, stinme O

S-2396-20 103

Cray XT™ Series Programming Environment User's Guide

104

Example 8: Using the Cray shmem get function

This example shows how to use the shrem get () function to copy a contiguous
data object from a different PE to a contiguous data object on the local PE.

Module required:
Xt pe-target-cnl

Note: The Fortran module for Cray SHMEM is not supported. Use the
I NCLUDE ' npp/ shnem f h' statement instead.

Source code of Fortran program (shrmen®. f 90):

program reduction
i ncl ude ' nmpp/ shmem f h'

real val ues, sum
common /c/ val ues
real work

call start_pes(0)
val ues=ny_pe()

call shmembarrier_all! Synchronize all PEs

sum= 0.0

do i = 0,numpes()-1
call shmem get(work, values, 1, i) I Get next value
sum = sum + wor k I Sumit

enddo

print*, 'PE,ny_pe(),' conputedsun¥',sum

call shnmembarrier_all
call shmem finalize

end
Compile shnen®. f 90 and create executable shnen®:

% ftn -o shnmen2 shnment. f 90

S-2396-20

Example CNL Applications [13]

S-2396-20

Run shnmeng:

% aprun -n 2 ./shnen®
PE 0 conput edsunr 1. 000000
PE 1 conputedsunrF 1. 000000

Application 106508 resources: utinme 0, stinme O
Example 9: Turning off the PGl FORTRAN STOP message

This example shows how to use the NO_STOP_MESSAGE environment variable to
turn of the PGl FORTRAN STOP message.

Modules required:

xt pe-target-cnl
Pr gEnv- pgi

Source code of program t est _st op. f 90:

program t est _stop

read *, i
if (i == 1) then
stop "I was 1"
el se
st op
end if
end

Compile programt est _st op. f 90 and create executable t est _st op:
%ftn -0 test_stop test_stop.f90
Runt est _stop:

% aprun -n 2 ./test_stop
1
0

Execution results:

I was 1

FORTRAN STOP

Application 40962 exit codes: 127

Application 40962 resources: utine 0, stinme O

105

Cray XT™ Series Programming Environment User's Guide

Turn off the FORTRAN STOP messages:
% set env NO_STOP_MESSAGE
Runtest _stop again:

% aprun -n 2 ./test_stop
1
0

Execution results:

I was 1
Application 40966 exit codes: 127
Application 40966 resources: utine 0, stinme O

Example 10: Running an MPI/OpenMP program

This example shows how to compile and run an OpenMP application using
PathScale.

Modules required:

Pr gEnv- pat hscal e
xt pe-target-cnl

Set the OMP_NUM_ THREADS environment variable to the number of threads in
the team.

Source code of C program onpl. c:

#i ncl ude <npi . h>
#i ncl ude <onp. h>
#i ncl ude <stdio. h>

int main(int argc, char *argv[])

{

int rank, nid, thread;

MPlI _Init(&argc, argv);
MPI _Cormm r ank(MPI _COVM WORLD, &rank);
PM _CNOS_Get _ni d(rank, &nid);
#pragma onp parallel private(thread)
{
thread = onp_get_thread_num();
#pragma onp barrier
printf("Hello fromrank %l (thread %) on ni d%©5d",

106 S-2396-20

Example CNL Applications [13]

S-2396-20

rank, thread, nid);
if (thread == 0)
printf(" <-- master\n");
el se
printf(" <-- subordinate\n");

}
MPl _Finalize();
return(0);

}

Compile and link onpl. c:

%cc -np -0 onpl onpl.c

Set the OpenMP environment variable:
% set env. OVP_NUM THREADS 2

Run program onp:

% aprun -n 2 -d 2 ./onpl

Hello fromrank O (thread 0) on ni d00540 <-- nmster
Hello fromrank 1 (thread 0) on ni d00541 <-- master
Hello fromrank O (thread 1) on ni d00540 <-- subordinate
Hello fromrank 1 (thread 1) on ni d00541 <-- subordinate
Application 14112 resources: utine 0, stime O

The apr un command created two instances of onpl; each instance of onpl
spawned an additional thread.

Example 11: Using a PBS Pro job script

In this example, a PBS Pro job script requests four processors to run an
application.

Modules required:

Xt pe-target-cnl
pbs

Do not load the xt - pbs module. Unload it if it has been loaded.
Create scri pt 1:

#!/ bi n/ bash

#

Define the destination of this job
as the queue naned "workqg":

107

Cray XT™ Series Programming Environment User's Guide

#PBS -q workq

#PBS -1 nppwi dt h=4

Tell PBS Pro to keep both standard output and
standard error on the execution host:

#PBS -k eo

cd /1 us/nid0007/userl

aprun -n 4 ./programl

exit O

Set permissions to executable:
% chnod +x scriptl

Submit the job:

% qsub scriptl

The gsub command produces a batch job log file with output from program1 (see
Example 5, page 98). The job log file has the form scri pt 1. onnnnn.

% cat scriptl.o019850

hell o from pe 0 of 4
hell o from pe 1 of 4
PE 1: sizeof(long) = 8

PE 1: The answer is: 42

hell o from pe 3 of 4
hell o from pe 2 of 4
Application 106510 resources: utinme 0, stime O

Example 12: Running an MPI program under PBS Pro

This example shows a batch script that runs the program si npl e. c (see
Example 3, page 95).

Modules required:

xt pe-target-cnl
pbs

Do not load the xt - pbs module. Unload it if it has been loaded.

108 S-2396-20

Example CNL Applications [13]

S-2396-20

Create scri pt 2:

% cat script2

#PBS -1 nppwi dt h=6
#PBS -j oe

cd /1 us/nid00011/ userl
aprun -n 6 ./sinmple

Set permissions to executable:

% chnod +x script2

Submit the script to the PBS Pro batch system:
% qsub script2

Display the job results:

% cat script?2.019852

hello frompe 0 of 6
hello frompe 2 of 6
hello frompe 3 of 6
hello frompe 1 of 6
hello frompe 4 of 6
hello frompe 5 of 6
Application 106513 resources: utinme 0, stime O

Example 13: Running an MPI_REDUCE program under PBS Pro

This example shows a batch script that runs the program r educe. f 90 (see
Example 4, page 96).

Modules required:

xt pe-target-cnl
pbs

Do not load the xt - pbs module. Unload it if it has been loaded.

Create a batch script, r un_r educe, verifying that the executable is in a directory

in the Lustre file system:

#!'/ bi n/ sh

#PBS -1 nppwi dt h=2

#PBS -j oe

#PBS -1 wal | ti me=00: 30: 00

cd $HOVE/ pe_user/

echo "Running the Exanpl e reduce "

109

Cray XT™ Series Programming Environment User's Guide

110

echo ""

dat e

echo ""

cd /1l us/nido0011/userl
aprun -n 2 ./reduce

Set permissions to executable:

% chnod +x run_reduce

Submit the script to the PBS Pro batch system:
% qsub run_reduce

Display the job results:

% cat run_reduce. 070977
Runni ng t he Exanpl e reduce

Wed May 9 13:36:52 CDT 2007

My PE: 1 M part: 2500
My PE: 0 M part: 2550
PE: 0 Total is: 5050

Application 65545 resources: utine 0, stime O
Example 14: Using a script to create and run a batch job

This example script takes two arguments, the name of a program (shnen®, see
Example 8, page 104) and the number of processors on which to run the program.
The script performs the following actions:

1. Creates a temporary file that contains a PBS Pro batch job script
2. Submits the file to PBS Pro
3. Deletes the temporary file

Modules required:

Xt pe-target-cnl
pbs

Do not load the xt - pbs module. Unload it if it has been loaded.
Create r un123:

#!/ bi n/ csh

S-2396-20

Example CNL Applications [13]

S-2396-20

if ("$1" == "") then
echo "Usage: run [executabl e|script] [ncpus]”
exit
endi f
set n=1 # set default nunber of CPUs
if ("$2" 1'="") set n=$2
cat > job. $$ <<EOT #creates the batch jobscript
#!/ bi n/ csh
#PBS - N $1
#PBS -1 nppwi dt h=$n
#PBS -j oe
cd ${PVD}
aprun -n $n -t30 ./ %1
ECT
gsub job.$$ # submit batch job
rmjob. $$

Set file permissions to executable:
% chnod +x runl23

Run the job script:

% ./runl23 shnen 2

List the job output:

% cat shmenR. 073595
PE 0 conput edsunr 1. 000000
PE 1 conputedsunrE 1. 000000
Application 35612 resources: utine 0, stime O

Example 15: Running multiple sequential applications

To run multiple sequential applications, the number of processors you specify as
an argument to qsub must be equal to or greater than the largest number of
processors required by a single invocation of apr un in your script. For example,
in job scriptmul t _seq_cnl , the-1 mnppwi dt h value is 4 because the largest
aprun n value is 4.

Modules required:

xt pe-target-cnl
pbs

Do not load the xt - pbs module. Unload it if it has been loaded.

111

Cray XT™ Series Programming Environment User's Guide

112

Create mul t _seq_cnl :

#! / bi n/ bash
#

Define the destination of this job

as the queue naned "workqg":
#PBS -q workq
#PBS -1 nppwi dt h=4

Tell PBS Pro to keep both standard output and

standard error on the execution host:

#PBS -k eo

cd /1 us/nido0011/userl
aprun -n 2 ./programl
aprun -n 3 ./progran®
aprun -n 4 ./shmentl
aprun -n 2 ./shment
exit O

The script launches applications pr ogr amil (see Example 5, page 98), pr ogr an?
(see Example 6, page 100), shneml (see Example 7, page 102), and shrren? (see

Example 8, page 104).

Set file permission to executable:
% chrmod +x mult _seq_cnl

Run the script:

% qsub mult _seq_cnl

List the output:

% cat nult_seq_cnl.019884

hell o from pe 1 of
hell o from pe 0 of
PE 1. sizeof(long) = 8

PE 1: The answer is: 42

Application 106691 resources: utinme 0, stime O

PE 0 : The answer is:

-1184

Application 106692 resources: utinme 0, stinme O

PE 0: Test passed.
PE 3: Test passed.
PE 2: Test passed.
PE 1: Test passed.

Application 106693 resources: utinme 0, stime O

PE 0 conput edsunr

1. 000000

S-2396-20

Example CNL Applications [13]

S-2396-20

PE 1 conputedsunrE 1. 000000
Application 106694 resources: utinme 0, stinme O

Example 16: Running multiple parallel applications

If you are running multiple parallel applications, the number of processors must
be equal to or greater than the total number of processors specified by calls to
apr un. For example, in job script mul t _par _cnl ,the-1 nppwi dt h value is 11
because the total of the apr un n valuesis 11.

Modules required:

xt pe-target-cnl
pbs

Do not load the xt - pbs module. Unload it if it has been loaded.
Create mul t _par_cnl :

#! / bi n/ bash

#

Define the destination of this job

as the queue naned "workqg":

#PBS -q workq

#PBS -1 nppwi dt h=11

Tell PBS Pro to keep both standard output and
standard error on the execution host:
#PBS -k eo

cd /Il us/nido0011/userl

aprun -n 2 ./programl &

aprun -n 3 ./progran? &

aprun -n 4 ./shmenl &

aprun -n 2 ./shmen2 &

exit O

The script launches applications pr ogr amil (see Example 5, page 98), pr ogr an?
(see Example 6, page 100), shneml (see Example 7, page 102), and shnen? (see
Example 8, page 104).

Set file permission to executable:
% chrmod +x mul t _par_cnl
Run the script:

% qsub mul t _par_cnl

113

Cray XT™ Series Programming Environment User's Guide

114

List the output:

% cat nult_par_cnl.07231

hell o from pe 0 of 2
hell o from pe 1 of 2
PE 1. sizeof(long) = 8

PE 1: The answer is: 42

Appl i cation 155001 resources: utime 0, stime O
PE 0 : The answer is: -1184
Application 155002 resources: utinme 0, stinme O
PE 0: Test passed.

PE 3: Test passed.

PE 2: Test passed.

PE 1: Test passed.

Application 155003 resources: utinme 0, stinme O
PE 0 conput edsun¥ 1. 000000
PE 1 conputedsunrE 1. 000000
Application 155004 resources: utinme 0, stime O

Example 17: Using the high-level PAPI interface

PAPI provides simple high-level interfaces for instrumenting applications written
in C or Fortran. This example shows the use of the PAPI _start_count ers()
and PAPI _st op_count er s() functions.

Modules required:

xt pe-target-cnl
papi - cnl

Source of papi _hl . c:

#i ncl ude <papi . h>
voi d mai n()

{

int retval, Events[2]= {PAPI_TOT_CYC, PAPI_TOT_I NS};

| ong_l ong val ues[2];

if (PAPI _start_counters (Events, 2) != PAPI_K) {
printf("Error starting counters\n");
exit(1);

}

/* Do sone conputation here... */

S-2396-20

Example CNL Applications [13]

S-2396-20

i f (PAPI _stop_counters (val ues,
printf("Error stopping counters\n");

exit(1);
}
printf("PAPI _TOT_CYC = %I d\n",
printf("PAPI _TOT_INS = %1 d\n",

}

Compile papi _hl . c:

% cc -o papi_hl papi_hl.c
Run papi _hl :

% aprun ./ papi _hl

PAPI _TOT_CYC = 3350

PAPI _TOT_I NS = 215

Appl i cation 155005 exit codes:

Appl i cation 155005 resources: utinme O,

Example 18: Using the low-level PAPI interface

= PAPI_OK) {

val ues[0]);
val ues[1]);

stime O

PAPI provides an advanced low-level interface for instrumenting applications.
The PAPI library must be initialized before calling any of these functions;
initialization can be done by issuing either a high-level function call or
acallto PAPI _library_init(). This example shows the use of the

PAPI _create_eventset (), PAPI _add_event (), PAPI _start(), and

PAPI _read() functions.
Modules required:

xt pe-target-cnl
papi - cnl

Source of papi _|'1.c:

#i ncl ude <papi . h>

voi d mai n()

{
int EventSet = PAPI NULL;
| ong_l ong val ues[1];

[* Initialize PAPI library */

if (PAPI _library_init(PAPI _VER CURRENT)

I = PAPI _VER CURRENT) {

115

Cray XT™ Series Programming Environment User's Guide

printf("Error initializing PAPI library\n");

exit(1);

}

/* Create Event Set */

if (PAPI _create_eventset (&EventSet) != PAPI _OK) {
printf("Error creating eventset\n");

exit(1);

}

/* Add Total Instructions Executed to eventset */

i f (PAPI _add_event (EventSet, PAPI_TOT_INS) != PAPI _OK) {
printf("Error adding event\n");
exit(1);

}

[* Start counting ... */

if (PAPI _start (EventSet) != PAPI_OK) {
printf("Error starting counts\n");
exit(1);

}

/* Do sone conputation here...*/

if (PAPI _read (EventSet, values) != PAPI _K) {
printf("Error stopping counts\n");

exit(1);
}
printf("PAPI _TOT_INS = % 1d\n", values[0]);
}
Compile papi _I1.c:
%cc -o papi _Il papi_Il.c
Run papi || :

% aprun ./ papi _||I

PAPI _TOT_I NS = 103

Application 155006 exit codes: 19

Appl i cation 155006 resources: utinme 0, stime O

116 S-2396-20

Example CNL Applications [13]

S-2396-20

Example 19: Using basic CrayPat functions

This example shows how to instrument a program, run the instrumented
program, and generate CrayPat reports.

Modules required:

Xt pe-target-cnl
craypat

Compile the sample program pr og. f 90 and the routine it calls, wor k. c.
Source code of pr og. f 90:

program nain
include 'nmpif.h'

call MPI_Init(ierr) ! Required
call MPI_Comm r ank(MPI _COW WORLD, nype,ierr)
call MPI_Comm si ze(MPI _COW WORLD, npes,ierr)

print *,"hello frompe', nype,' of',npes

do i =1+nype, 1000, npes ! Distribute the work
call work(i, mype)
enddo

call MPI_Finalize(ierr) ! Required
end

Source code of wor k. c:

void work_(int *N, int *MYPE)

{
int n=*N, nype=* WPE;
if (n==42) {
printf("PE %l: sizeof(long) = %\ n", nype, si zeof (1 ong));
printf("PE %: The answer is: %\n", nype, n);
}
}

Compile pr og. f 90 and wor k. ¢ and create executable pr ogr ant:

%cc -c work.c
%ftn -o programl prog.f90 work. o

117

Cray XT™ Series Programming Environment User's Guide

Run pat _bui | d to generate instrumented program pr ogr ani+pat :

% pat _build -u -g npi programl progranil+pat
INFO A trace intercept routine was created for the function 'work
INFO a total of 39 function entry points were traced

The tracegroup (- g option) is npi .
Run pr ogr antl+pat :

% aprun -n 4 ./ programl+pat

hell o from pe 1 of 4
hell o from pe 3 of 4
hell o from pe 2 of 4
hell o from pe 0 of 4

PE 1. sizeof(long) = 8

PE 1: The answer is: 42

Experiment data directory witten:

[uf s/ horre/ user s/ user 1/ pat / pr ogr aniL+pat +3820t dt

Note: When executed, the instrumented executable creates directory
progname+pat +PIDkeyletters, where . PID is the process ID that was assigned
to the instrumented program at run time.

Run pat _r eport to generate reports pr ogr amil. r pt 1 (using default
pat _report options) and pr ogr amil. r pt 2 (using the - O cal | t r ee option).

% pat _report programl+pat +3820tdt > progranl.rptl

Data file 4/4: [....................]
% pat _report -O calltree programl+pat +3820tdt > programl.rpt2
Data file 4/4: [......]

List progrant. r pt 1:

% nmore progrant.rptl
CrayPat/ X: Version 3.2 Revision 799 (xf 784) 04/23/07 07:49: 22

Experinent: trace

Experinment data file:
/1'us/ ni d00011/ user 1/ cnl/ programl+pat +3820tdt/*. xf (RTS)

Original program /1 us/nid00011/ user 1/ cnl/ progranil

Instrumented with: pat_build -u -g npi progranml progranil+pat

118 S-2396-20

Example CNL Applications [13]

Instrumented program /Il us/ni d00011/user1/cnl/./progranil+pat
Program i nvocation: ./programl+pat
Nurmber of PEs: 4
Exit Status: 0 PEs: 0-3
Runti me envi ronment vari abl es:
MPI CHBASEDI R=/ opt / xt - mpt / 2. 0. 05/ npi ch2- 64
MPI CH DI R=/ opt / xt - npt / 2. 0. 05/ npi ch2- 64/ P2
MPI CH_DI R_FTN_DEFAULT64=/ opt / xt - npt / 2. 0. 05/ npi ch2- 64/ P2W
PAT_BUI LD_ASYNC=0
PAT_ROOT=/ opt / xt-t ool s/ craypat/ 3. 2. 1/ cpat x
PAT_RT_EXPFI LE_PER PROCESS=1
PAT_RT_HWPC=1

Report time environnent vari abl es:
PAT_ROOT=/ opt / xt-t ool s/ craypat/ 3. 2. 1/ cpat x

Report command |ine options: <none>
System type and speed: x86_64 2400 MHz

Qperating system
Li nux 2.6.16.27-0.9-cnl #1 SWMP Tue May 8 18:24:11 PDT 2007

Har dwar e performance counter events:

PAPI _TLB DM Data transl ati on | ookasi de buffer m sses
PAPI _L1_DCA Level 1 data cache accesses

PAPI _FP_OPS Fl oati ng poi nt operations

DATA CACHE M SSES Data Cache M sses

User _Cycl es Virtual Cycles

Esti mated mi ni nrum overhead per call of a traced function,
whi ch was subtracted fromthe data shown in this report

(for raw data, use the option: -s overhead=include):
PAPI _TLB_DM 0.000 misses
PAPI _L1 DCA 1282.080 ops
PAPI _FP_OPS 3.000 ops
DATA_CACHE_M SSES 8.312 misses
User _Cycl es 4302. 000 cycles
Ti me 1. 799 nicroseconds

S-2396-20 119

Cray XT™ Series Programming Environment User's Guide

120

Nunmber of traced functions: 42
Notes for table 1:

Tabl e option:
-Oprofile

Options inplied by table option:
-d tiv%@.05,ti,inb_ti,inb_ti%tr,P\
-b ex, gr, fu, pe=H DE, t h=Hl DE

Options for related tables not shown by default:
-Ocallers
-O callers+src
-Ocalltree
-Ocalltreetsrc

This table shows only Ilines with Ti ne% > 0. 05.

Percentages at each level are relative
(for absol ute percentages, specify: -s percent=a).

Table 1: Profile by Function G oup and Function

Experinment=1 / Goup / Function / PEE'H DE / Thread=0="H DE

Total s for program

Ti me% 100. 0%

Ti me 0. 001362

I mb. Ti me --

I mb. Ti me% --

Calls 2628

PAPI _TLB_DM 0. 712M sec 881 mi sses
PAPI L1 DCA 1173. 861M sec 1452993 ops

PAPI _FP_OPS 5. 548M sec 6867 ops

DATA CACHE_M SSES 11. 104M sec 13745 mi sses
User tine 0. 001 secs 2970696 cycl es
Utilization rate 90. 9%

HWFP Qps / Cycles 0. 00 ops/cycle
HWFP Ops / User tine 5. 548M sec 6867 ops 0. 0%peak
HWFP Ops / WCT 5. 043M sec

S-2396-20

Example CNL Applications [13]

Conputation intensity 0. 00 ops/ref
LD & ST per TLB mi ss 1649. 25 refs/ mss
LD & ST per D1 miss 105. 71 refs/mss
D1 cache hit ratio 99. 1%
% TLB ni sses / cycle 0. 0%
88. 2%

HWFP Qps / Cycles 0. 00 ops/cycle
HWFP Qps / User tine 4. 585M sec 4331 ops 0. 0%peak
HWFP Ops / WCT 4.042M sec
Conputation intensity 0. 00 ops/ref
LD & ST per TLB m ss 1147. 43 ref s/ mss
LD & ST per D1 miss 114.77 refs/mss
D1 cache hit ratio 99. 1%
% TLB ni sses / cycle 0. 0%

<sni p>

Notes for table 3:

Tabl e option:
-O programtine

Options inplied by table option:
-d pt -b ex, pe, th=[nmmi

Table 3: Program Wall dock Tine
Process | Experi nent =1
Time | PE
| Thread=0[nmmi

0. 008343 | Tot al

List progr ant. r pt 2:

% nmore progrant.rpt2
CrayPat/X: Version 3.2 Revision 799 (xf 784) 04/23/07 07:49: 22

S-2396-20 121

Cray XT™ Series Programming Environment User's Guide

122

Experinent: trace

Experinent data file:
/1us/ ni d00011/ user 1/ cnl/ programl+pat +3820tdt/*. xf (RTS)

Original program /1 us/nid00011/ user 1/ cnl/ progranil
Instrunented with: pat_build -u -g npi progranl progranil+pat
Instrumented program /Il us/nid00011/user1/cnl/./progranil+pat
Program invocation: ./programl+pat
Nurmber of PEs: 4
Exit Status: 0 PEs: 0-3
Runti me environment vari abl es:
MPI CHBASEDI R=/ opt / xt - npt/ 2. 0. 05/ npi ch2- 64
MPI CH DI R=/ opt / xt - npt / 2. 0. 05/ npi ch2- 64/ P2
MPI CH DI R_FTN_DEFAULT64=/ opt / xt - npt / 2. 0. 05/ npi ch2- 64/ P2W
PAT_BUI LD_ASYNC=0
PAT_ROOT=/ opt / xt-t ool s/ craypat/ 3. 2. 1/ cpat x
PAT_RT_EXPFI LE_PER PROCESS=1
PAT_RT_HWPC=1

Report time environnent variabl es:
PAT_ROOT=/ opt / xt-t ool s/ craypat/ 3. 2. 1/ cpat x

Report command line options: -Ocalltree
System type and speed: x86_64 2400 MHz

Qperating system
Li nux 2.6.16.27-0.9-cnl #1 SMP Tue May 8 18:24:11 PDT 2007

Har dwar e performance counter events:

PAPI _TLB DM Data transl ati on | ookasi de buffer m sses
PAPI L1 DCA Level 1 data cache accesses

PAPI _FP_OPS Fl oati ng poi nt operations

DATA CACHE M SSES Data Cache M sses

User _Cycl es Virtual Cycles

S-2396-20

Example CNL Applications [13]

Esti mated mi ni nrum overhead per call of a traced function,
whi ch was subtracted fromthe data shown in this report

(for raw data, use the option: -s overhead=incl ude):
PAPI _TLB_DM 0.000 nisses
PAPI L1 DCA 1282. 080 ops
PAPI _FP_OPS 3.000 ops
DATA_CACHE_M SSES 8.312 misses
User _Cycl es 4302. 000 cycles
Ti me 1.799 m croseconds

Nunmber of traced functions: 42
Notes for table 1:
Tabl e option:
-Ocalltree
Options inplied by table option:
-d ti%@. 05, cumti%ti,tr,P -b ex,ct, pe=H DE, t h=H DE

This table shows only Iines with Ti me% > 0. 05.

Percent ages at each level are relative
(for absol ute percentages, specify: -s percent=a).

Table 1: Function Calltree View

Experinment=1 / Calltree / PE="H DE / Thread=0="H DE

Total s for program

Ti me% 100. 0%

Cum Ti ne% 100. 0%

Ti ne 0. 001362

Calls 2628

PAPI _TLB DM 0.712M sec 881 m sses
PAPI _L1_DCA 1173. 861M sec 1452993 ops
PAPI _FP_OPS 5. 548M sec 6867 ops
DATA_CACHE_M SSES 11. 104M sec 13745 m sses
User tine 0. 001 secs 2970696 cycl es
Uilization rate 90. 9%

HWFP Ops / Cycles 0. 00 ops/cycle

S-2396-20 123

Cray XT™ Series Programming Environment User's Guide

HWFP Ops / User tine 5.548M sec 6867 ops 0. 0%peak
HWFP Qps / User tine 5. 548M sec 6867 ops 0. 0%peak
HWFP OQps / WCT 5. 043M sec
Conputation intensity 0. 00 ops/ref
LD & ST per TLB m ss 1649. 25 ref s/ mss
LD & ST per D1 niss 105. 71 refs/mss
D1 cache hit ratio 99. 1%
% TLB nmisses / cycle 0.0%
<sni p>
exit
Ti me% 10. 0%
Cum Ti me% 100. 0%
Ti me 0. 000136
Calls 800
PAPI _TLB_DM 0 misses
PAPI L1 DCA 1735. 094M sec 236515 ops
PAPI _FP_OPS 9. 243M sec 1260 ops
DATA CACHE_M SSES 14. 005M sec 1909 mi sses
User tine 0. 000 secs 327150 cycl es
Utilization rate 100. 0%
HWFP Qps / Cycles 0. 00 ops/cycle
HWFP Ops / User tine 9. 243M sec 1260 ops 0. 0%peak
HWFP Ops / WCT 9. 243M sec
Conputation intensity 0. 01 ops/ref
LD & ST per TLB mi ss 236515. 00 refs/mss
LD & ST per D1 miss 123.89 refs/mss
D1 cache hit ratio 99. 2%
% TLB ni sses / cycle 0. 0%

Example 20: Using hardware performance counters

This example uses the same instrumented program as Example 19, page 117 and
generates reports showing hardware performance counter (HWPC) information.

Modules required:

xt pe-target-cnl
craypat

124 S-2396-20

Example CNL Applications [13]

Collect HWPC event set 1 information and generate report pr ogr aml. r pt 3 (for
a list of predefined event sets, see the hwpc(3) man page):

% set env PAT_RT_HWPC 1
% aprun -n 4 ./progranil+pat
CrayPat/X: Version 3.1 Revision 363 08/28/06 16:25:58

hell o from pe 3 of 4
hell o from pe 1 of 4
hell o from pe 2 of 4
hell o from pe 0 of 4

PE 1. sizeof(long) = 8

PE 1: The answer is: 42

Experiment data directory witten:

[uf s/ horre/ user s/ user 1/ pat / pr ogr aniL+pat +3820t dt

% pat _report progranl+pat +3820tdt > programl.rpt3
Data file 4/4:

List progrant. r pt 3:

Experinent: trace

Experinment data file:
/1 'us/ ni d00011/ user 1/ cnl/ programl+pat +3820tdt/*. xf (RTS)

Original program /1 us/nid00011/ user 1/ cnl/ progranil
Instrumented with: pat_build -u -g npi progranml progranil+pat
I nstrunented program /Il us/ni d00011/user1/cnl/./progranil+pat
Program invocation: ./programl+pat
Nurmber of PEs: 4
Exit Status: 0 PEs: 0-3
Runtime environnent vari abl es:
MPI CHBASEDI R=/ opt / xt - mpt / 2. 0. 05/ npi ch2- 64
MPI CH_DI R=/ opt/ xt - npt/ 2. 0. 05/ npi ch2- 64/ P2
MPI CH_DI R_FTN_DEFAULT64=/ opt / xt - npt / 2. 0. 05/ npi ch2- 64/ P2W
PAT_BUI LD_ASYNC=0
PAT_ROOT=/ opt / xt -t ool s/ craypat/ 3. 2. 1/ cpat x
PAT_RT_EXPFI LE_PER PROCESS=1

S-2396-20 125

Cray XT™ Series Programming Environment User's Guide

PAT_RT_HWPC=1

Report time environnent vari abl es:
PAT_ROOT=/ opt/ xt-t ool s/ craypat/ 3. 2. 1/ cpat x

Report command |ine options: <none>
System type and speed: x86_64 2400 MHz

Operating system

Li nux 2.6.16.27-0.9-cnl #1 SMP Tue May 8 18:24:11 PDT 2007

Har dwar e performance counter events:

PAPI _TLB_DM Data transl ati on | ookasi de buffer m sses
PAPI L1 DCA Level 1 data cache accesses

PAPI _FP_OPS Fl oati ng poi nt operations

DATA CACHE M SSES Data Cache M sses

User _Cycl es Virtual Cycles

Esti mated mi ni nrum overhead per call of a traced function,
whi ch was subtracted fromthe data shown in this report

(for raw data, use the option: -s overhead=include):
PAPI _TLB DM 0.000 misses
PAPI _L1 DCA 1282.080 ops
PAPI _FP_OPS 3.000 ops
DATA_CACHE_M SSES 8.312 nisses
User _Cycl es 4302. 000 cycles
Ti me 1. 799 nicroseconds

Nunmber of traced functions: 42
Notes for table 1:

Tabl e option:
-Oprofile

Options inplied by table option:
-d tiv%@.05,ti,inb ti,inb ti%tr,P\
-b ex, gr, fu, pe=H DE, t h=Hl DE

Options for related tables not shown by default:
- O | oad_bal ance
-Ocallers
-O callers+src

126

S-2396-20

Example CNL Applications [13]

-Ocalltree
-Ocalltree+src

This table shows only Ilines with Ti ne% > 0. 05.

Percent ages at each level are relative
(for absol ute percentages, specify: -s percent=a).

Table 1: Profile by Function G oup and Function

Experiment=1 / Goup / Function / PE='"H DE / Thread=0="H DE

Total s for program

Ti me% 100. 0%
Ti me 0. 001362
I nb. Ti me --
I mb. Ti me% --
Calls 2628
PAPI _TLB DM 0.712M sec 881 mi sses
PAPI _L1_DCA 1173. 861M sec 1452993 ops
PAPI _FP_OPS 5. 548M sec 6867 ops
DATA_CACHE_M SSES 11. 104M sec 13745 mi sses
User tine 0. 001 secs 2970696 cycl es
Uilization rate 90. 9%
HWFP Ops / Cycles 0. 00 ops/cycle
HWFP Ops / User tine 5. 548M sec 6867 ops 0. 0%peak
HWFP Qps / WCT 5. 043M sec
Conputation intensity 0. 00 ops/ref
LD & ST per TLB m ss 1649. 25 ref s/ mss
LD & ST per D1 niss 105. 71 refs/mss
D1 cache hit ratio 99. 1%
% TLB nmisses / cycle 0.0%

<sni p>

Notes for table 3:

Tabl e option:
-O programtine

Options inplied by table option:
-d pt -b ex, pe,th=[nmm

S-2396-20 127

Cray XT™ Series Programming Environment User's Guide

Table 3: ProgramWall dock Tine

Process | Experi nent =1
Time | PE
| Thread=0[nmmi

0.008343 | Tota

0. 009220 | pe.1
0. 009074 | pe. O
0. 007577 | pe. 2
0. 007501 | pe. 3

Collect information about translation lookaside buffer (TLB) misses
(PAPI _TLB_ DM and generate report pr ogr anmi. r pt 4:

% setenv PAT_RT_HWPC PAPI _TLB_DM

% aprun -n 4 ./progranil+pat

hello frompe 0 of 4

hello frompe 1 of 4

PE 1: sizeof(long) = 8

PE 1: The answer is: 42

hello frompe 2 of 4

hello frompe 3 of 4

Experinment data file witten:

/1 us/ ni d00011/ user 1/ cnl/ programl+pat +3820t dt
Application 34876 resources: utine 0, stime O
% pat _report programl+pat +2790tdt.xf > programl.rpt4
Data file 4/4: [.......]

List progr antl. r pt 4:

CrayPat/ X: Version 3.2 Revision 799 (xf 784) 04/23/07 07:49: 22
Experinent: trace

Experinent data file:
/1'us/ ni d00011/ user 1/ cnl/ programl+pat +2790t dt . xf (RTS)

Original program /1 us/nid00011/ user 1/ cnl/ prograntl

Instrunmented with: pat_build -u -g npi progranl progranil+pat

128 S-2396-20

Example CNL Applications [13]

I nstrunented program /Il us/ni d00011/user1/cnl/./progranil+pat
Program i nvocation: ./programl+pat
Nunber of PEs: 4
Exit Status: 0 PEs: 0-3
Runtine environnent vari abl es:
MPI CHBASEDI R=/ opt / xt - mpt / 2. 0. 05/ npi ch2- 64
MPI CH DI R=/ opt / xt - npt / 2. 0. 05/ npi ch2- 64/ P2
MPI CH_DI R_FTN_DEFAULT64=/ opt / xt - npt / 2. 0. 05/ npi ch2- 64/ P2W
PAT_RT_HWPC=PAPI _TLB_DM

Report time environnent vari abl es:
PAT_ROOT=/ opt / xt -t ool s/ craypat/ 3. 2. 1/ cpat x

Report command |ine options: <none>
System type and speed: x86_64 2400 MHz

Qperating system
Li nux 2.6.16.27-0.9-cnl #1 SWMP Tue May 8 18:24:11 PDT 2007

Har dwar e performance counter events:
PAPI _TLB DM Data translation | ookaside buffer m sses
User_Cycles Virtual Cycles

Esti mated mi ni nrum overhead per call of a traced function,
whi ch was subtracted fromthe data shown in this report

(for raw data, use the option: -s overhead=incl ude):
PAPI _TLB_DM 0.000 mi sses
User _Cycl es 3690. 000 cycles
Ti me 1.546 microseconds

Nunber of traced functions: 42
Notes for table 1:
Tabl e option:
-Oprofile
Options inplied by table option:

S-2396-20 129

Cray XT™ Series Programming Environment User's Guide

130

-d ti%@.05,ti,inmb_ti,inmb_ti%tr,P -b gr,fu, pe=H DE, t h=H DE

Options for related tables not shown by default:

- O | oad_bal ance
-Ocallers
-O callers+src
-Ocalltree
-Ocalltree+src

This table shows only Iines with Ti me% > 0. 05.

Percent ages at each level are relative

(for absol ute percentages, specify:

Table 1: Profile by Function G oup and Function

Goup / Function / PE='"H DE [/ Thread=0="H DE

-s percent=a).

Total s for program

I mb. Ti e

I mb. Ti mre%

Calls

PAPI _TLB DM 0. 788M sec
User tine 0. 001 secs
Uilization rate

% TLB nisses / cycle

100. 0%
0. 001136

2628
833 mi sses
2538210 cycl es
93. 1%
0. 0%

<sni p>
Notes for table 3:

Tabl e option:
-O programtine

Options inplied by table option:
-d pt -b pe,th=[mmj

Table 3: ProgramWall dock Tine

Process | PE
Time | Thread=0[nmmi

S-2396-20

Example CNL Applications [13]

0. 132561 | Tot al

0. 140586 | pe. 3
0. 140554 | pe. 2
0. 124558 |pe. 1
0. 124545 | pe. 0

S-2396-20 131

Cray XT™ Series Programming Environment User's Guide

132 S-2396-20

Example Catamount Applications [14]

S-2396-20

This chapter gives examples showing how to compile, link, and run Catamount
applications. Use the nodul e |i st command to verify that the correct modules
are loaded. If the xt pe-t ar get - cnl module is loaded, use:

% nodul e swap xtpe-target-cnl xtpe-target-catanmount
Each following example lists the additional modules that have to be loaded.
Example 21: Basics of running a Catamount application

This example shows how to use the PGI C compiler to compile an MPI program
and yod to launch the executable.

Modules required:

xt pe-t ar get - cat anount
Pr gEnv- pgi

Create a C program, si npl e. c:

#i ncl ude "npi . h"

int main(int argc, char *argv[])
{
int rank;
i nt nunprocs;
MPI _Init(&argc, &argv);
MPI _Conmm r ank(MPI _COVM WORLD, &r ank) ;
MPI _Conmm si ze(MPI _COVM WORLD, &unpr ocs) ;

printf("hello frompe % of %l\n",rank, nunprocs);
MPl _Finalize();
}

Compile the program:
%cc -o sinple sinple.c
Run the program:

% yod -sz 6 sinple
hello frompe 3 of 6
hello frompe 0 of 6
hello frompe 3 of 6

133

Cray XT™ Series Programming Environment User's Guide

134

hello frompe 5 of 6
hello frompe 2 of 6
hello frompe 1 of 6
hello frompe 4 of 6

Example 22: Basics of running an MPI application

This example shows how to compile, link, and run an MPI program. The MPI
program distributes the work represented in a reduction loop, prints the subtotal
for each PE, combines the results from the PEs, and prints the total.

Module required:
Xt pe-t ar get - cat anount
Create a Fortran program, r educe. f 90:

program reduce
i nclude "npif.h"

integer n, nres, ierr

call MPI_INIT (ierr)

call MPI _COMM RANK (MPI _COVM WORLD, nype, ierr)
call MPI_COW SI ZE (MPI _COVM WORLD, npes, i err)

nres =0
n=2~0

do i =nype, 100, npes

n=n+i
enddo

print *, "My PE', nype, ' My part:',n

call MPI_REDUCE (n,nres, 1, MPl _I NTEGER, MPI _SUM 0, MPI _COVMM WORLD, i err)
if (mype == 0) print *,' PE:', nype, ' Total is:',nres

call MPI_FINALIZE (ierr)

end
Compile r educe. f 90 and create executable r educe:
% ftn -o reduce reduce.f90

S-2396-20

Example Catamount Applications [14]

Run the program:

% yod -sz 2 reduce

My PE: 0 M part: 2550
My PE: 1 M part: 2500
PE: 0 Total is: 5050

If desired, you could use this C version of the program:

/* programreduce */

#i ncl ude <stdio. h>
#i ncl ude "npi . h"

int min (int argc, char *argv[])
{
int i, sum mype, npes, nres, ret;
ret = MPl_Init (&argc, &argv);
ret = MPI_Comm si ze (MPI _COW WORLD, &npes);
ret = MPI_Comm rank (MPI_COW WORLD, &nype);
nres = 0;
sum = 0O;
for (i = nype; i <=100; i += npes) {
sum = sum + i;

}

(void) printf ("My PEE% M part:%\n", nype, sum;
ret = MPI _Reduce (&sum &nres, 1, MPl _| NTEGER, MPI _SUM 0, MPI _COVM WORLD) ;

if (mype == 0)
{
(void) printf ("PE: % Total is:%l\n",nype, nres);
}
ret = MI_Finalize ();

S-2396-20 135

Cray XT™ Series Programming Environment User's Guide

136

Example 23: Running an MPI work distribution program

This example uses MPI solely to identify the processor associated with each
process and select the work to be done by each processor. Each processor writes

its output directly to st dout .

Module required:

Xt pe-t ar get - cat anount

Source code of Fortran main program (pr og. f 90):

program nain
include 'nmpif.h'

call MPI _Init(ierr) ! Required
call MPI_Comm rank(MPI _COWM WORLD, nype,ierr)
call MPI_Comm si ze(MPI _COW WORLD, npes, i err)

print *,"hello frompe', nype,' of',npes

do i =1+nype, 1000, npes ! Distribute the work
call work(i, mype)
enddo

call MPI_Finalize(ierr) ! Required
end

The C function wor k. ¢ processes a single item of work.
Source code of wor k. c:

#i ncl ude <stdio. h>

void work_(int *N, int *MYPE)

{

int n=*N, nype=* WPE;

if (n==42) {
printf("PE %: sizeof(long) = %\ n", nype, sizeof (1 ong));
printf("PE %: The answer is: %\n", nype,n);
}
}

Compile wor k. c:

%cc -c work.c

S-2396-20

Example Catamount Applications [14]

Compile pr og. f 90, load wor k. 0, and create executable pr ogr aml:
% ftn -o programl prog.f90 work.o

Run progr amt:

% yod -sz 2 programl

Output from pr ogr aml:

hell o from pe 0 of 2
hell o from pe 1 of 2
PE 1. sizeof(long) = 8
PE 1: The answer is: 42

If you want to use a C main program instead of the Fortran main program,
compile pr og. c:

#i ncl ude <stdio. h>
#i ncl ude <npi . h> /* Required */

mai n(i nt argc, char **argv)
{
int i, mpe,npes;

MPI _I nit(&argc, &rgv); /* Required */
MPI _Conmm r ank(MPI _COVM WORLD, &mype) ;
MPlI _Comm si ze(MPI _COVM WORLD, &npes) ;

printf("hello frompe % of %\ n", nype, npes);

for (i=1+nype; i<=1000; i+=npes) { /* distribute the work */
work_(& , &mype);
}

MPI _Finalize(); /* Required */
}

Example 24: Combining results from all processors using MPI

In this example, MPI combines the results from each processor. PE O writes the
output to st dout .

Module required:

Xt pe-tar get - cat anount

S-2396-20 137

Cray XT™ Series Programming Environment User's Guide

Source code of Fortran main program (pr ogl. f 90):

program main
include 'nmpif.h'
i nteger workl

call MPI_Init(ierr)
call MPI_Comm rank(MPI _COW WORLD, nype,ierr)
call MPI_Comm si ze(MPI _COW WORLD, npes, i err)

n=0

do i =1+nype, 1000, npes
n =n + work1(i, nype)

enddo

call MPI_Reduce(n,nres, 1, MPl _I NTEGER, MPI _SUM 0, MPI _COVWM WORLD, i er)
if (nmype.eq.0) print *,'PE ,nmype,': The answer is:',nres

call MPI_Finalize(ierr)
end

The C function wor k1. ¢ processes a single item of work.
Source code of wor k1. c:

int workl (int *N, int *MYPE)

{
int n=*N, nype=* MYPE;
i nt mysum=0;
switch(n) {
case 12: mysumt=n;
case 68: nmysumt=n;
case 94: nysumt=n,
case 120: nysunt=n;
case 19: mysum =n;
case 103: mysum =n;
case 53: nmysum =n;
case 77: mysum =n,
}
return nysum
}

138 S-2396-20

Example Catamount Applications [14]

Compile wor k1. ¢ and pr ogl. f 90:

% cc -c workl.c
% ftn -o progran? progl.f90 workl.o

Run progr ang:

% yod -sz 3 progran?
PE 0 : The answer is: -1184

If you want to use a C main program instead of the Fortran main program,
compile progl. c:

#i ncl ude <stdio. h>
#i ncl ude <npi . h>

mai n(int argc, char **argv)
{

int i, mpe,npes,n=0,res;

MPI _I nit(&argc, &rgv);
MPI _Cormm r ank(MPI _COVM WORLD, &mype) ;
MPI _Comm si ze(MPI _COVM WORLD, &npes) ;

for (i=nype; i<1000; i+=npes) {
n += workl (& , &nype);
}

MPl _Reduce(&n, & es, 1, VPl _I NT, MPl _SUM 0, MPI _COWM WORLD) ;

if (!nype) {
printf("PE %: The answer is: %\ n", mype,res);

}
MPI _Finalize();

}

and link it with wor k1. o:
% cc -o progranB progl.c workl.o
Example 25: Using the Cray shrem put function

This example shows how to use the shnmem put 64() function to copy a
contiguous data object from the local PE to a contiguous data object on a different
PE.

S-2396-20 139

Cray XT™ Series Programming Environment User's Guide

140

Module required:
Xt pe-tar get - cat anount
Source code of C program (shrment. c):

/*
* sinple put test
*/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <npp/ shnem h>

/* Di nension of source and target of put operations */
#define DI M 1000000

long target[DIM;
long local[DIM;

mai n(i nt argc, char **argv)
{

register int i;

int ny_partner, ny_pe;

/* Prepare resources required for correct functionality
of SHVEM on XT3. Alternatively, shmem.init() could
be called. */

start_pes(0);

for (i=0; i<DIM i++) {

target[i] = OL;

local[i] = shmem.ny_pe() + (i * 10);
}

ny_pe = shmem.ny_pe();

i f(shmem n_pes() %) ({
if(ny_pe == 0) printf("Test needs even nunber of processes\n");
/* Clean up resources before exit. */
shnmem finalize();
exit(0);

S-2396-20

Example Catamount Applications [14]

S-2396-20

shnmem barrier_all();

/* Test has to be run on two procs. */
my_partner = ny_pe %2 ? nmy_pe - 1 : ny_pe + 1;

shnem put 64(target, | ocal, D Mny_partner);

/* Synchroni ze before verifying results. */
shnmem barrier_all ();

/* Check results of put */
for(i=0; i<DIM i++) {
if(target[i] != (ny_partner + (i * 10))) {

fprintf(stderr,"FAIL (1) on PE % target[%l] = % (%)\n",

shnmem ny_pe(), i, target[i], ny_partner+(i*10));
shmem finalize();
exit(-1);

}
}

printf(" PE %l: Test passed.\n",ny_pe);

/* Cean up resources. */
shnmem finalize();

}

Compile shnent. ¢ and create executable shnmentl:
% cc -o shmenl shmemnl. c

Run shen:

% yod -sz 4 shnenl
PE 2: Test passed.
PE 1: Test passed.
PE 3: Test passed.
PE 0: Test passed.

Example 26: Using the Cray shrem get function

This example shows how to use the shmem get function to copy a contiguous

data object from a different PE to a contiguous data object on the local PE.

Note: The Fortran module for Cray SHMEM is not supported. Use the
I NCLUDE ' npp/ shnem f h' statement instead.

141

Cray XT™ Series Programming Environment User's Guide

Module required:
Xt pe-tar get - cat anount
Source code of Fortran program (shnen®. f 90):

program reduction
i ncl ude ' nmpp/ shmem f h'

real val ues, sum
common /c/ val ues
real work

call start_pes(0)
val ues=ny_pe()

call shmembarrier_all! Synchronize all PEs

sum= 0.0

do i = 0,numpes()-1
call shmem get(work, values, 1, i) I Get next value
sum = sum + work I Sumit

enddo

print*, 'PE,ny_pe(),' conputedsun¥',sum

call shmembarrier_all
call shmemfinalize

end
Compile shnen®. f 90 and create executable shnen®:

% ftn -0 shnmen? shnmen?. f 90

Run shmen®:

% yod -np 2 shneng

PE 0 conput edsunr 1. 000000
PE 1 conput edsunr 1. 000000

Example 27: Turning off the PGI FORTRAN STOP message

This example shows how to use the NO_STOP_MESSAGE environment variable to
turn of the FORTRAN STOP message.

Modules required:
Xt pe-t ar get - cat anount

142 S-2396-20

Example Catamount Applications [14]

Pr gEnv- pgi
Source code of program t est _st op. f 90:

program t est _stop

read *, i
if (i == 1) then
stop "I was 1"
el se
st op
end if
end

Verify that the Pr gEnv- pgi module is loaded.

Compile programt est _st op. f 90 and create executable t est _st op:
%ftn -0 test_stop test_stop.f90

Runt est _stop:

% yod -sz 2 test_stop
1
0

Execution results:

| was 1
FORTRAN STOP

Turn off the FORTRAN STOP messages:
% set env NO_STOP_MESSAGE
Runtest _stop again:

% yod -sz 2 test_stop
1
0

Execution results:
I was 1
Example 28: Using dcl ock() to calculate elapsed time

The following example uses the dcl ock() function to calculate the elapsed time
of a program segment.

S-2396-20 143

Cray XT™ Series Programming Environment User's Guide

Module required:
Xt pe- tar get - cat anount
Source code of dcl ock. c:

#i ncl ude <cat anount/dcl ock. h>

mai n()

{
doubl e start_time, end_tinme, elapsed_tine;
start_time = dcl ock();
sl eep(5);
end_tine = dcl ock();
el apsed_tine = end_tine - start_tine;
printf("\nEl apsed time = %\n", el apsed_tine);

}

Compile dcl ock. c and create executable dcl ock:
% cc -o dcl ock dcl ock.c
Run dcl ock:

% yod dcl ock
El apsed time = 5.000007

Example 29: Specifying a buffer for 1/O

An important consideration for C++ 1/0 in Catamount applications is that the
endl function causes the data in the buffer to be flushed. In most cases, the
end| function is used to output a new ling, so an endl function usually can be
replaced in the code by specifying a newline character. In this example, endl is
redefined to be ' \ n' . If a flush is needed, you can include a call to the f | ush()
member function.

Module required:
Xt pe- tar get - cat anount
Source code of i 01. C

#i ncl ude <i ostreans
#i ncl ude <cat anount/dcl ock. h>

usi ng nanmespace std;

144 S-2396-20

Example Catamount Applications [14]

S-2396-20

#define endl '\n'

int main(int argc, char ** argv) {
doubl e start, end;
char *buffer;

buffer = (char *)nall oc(sizeof (char)*12000);
cout . rdbuf () - >pubset buf (buf fer, 12000) ;
start = dcl ock();
for (int i =0; i < 1000; i++) {
cout << "line: " << i << endl;
}
end = dcl ock();
cout.flush(); [// Force a flush of data (not necessary)

cerr << "Time to wite using buffer =" << end - start << endl;
return O;

}

Compilei ol. C

% CC -0 i0liol.C
Runi ol, directing output to file t mp:

% yod iol > tnp
% cat tnp
Time to wite using buffer = 0.000599465

Example 30: Changing default buffer size for I/O to file streams

This example uses a default buffer and a modified buffer to write data and prints
the time-to-write value for each process.

Module required:
Xt pe-t ar get - cat anount
Source code of i 02. C

#i ncl ude <i ostreanp

#i ncl ude <fstreanr

#i ncl ude <cat anount/dcl ock. h>
usi ng namespace std;

#define endl '\n'

145

Cray XT™ Series Programming Environment User's Guide

146

char data[] = " 2345678901234567890123456789 \
0123456789012345678901234567890";

int main(int argc, char ** argv) {
doubl e start, end;
char *buffer;

/] Use default buffer
of stream dat al("out put1");
start = dcl ock();
for (int i =0; i < 10000; i++) {
datal << "line: " << | << data << endl;

}
end = dcl ock();

datal.flush(); // Force a flush of data (not necessary)

cerr << "Time to wite using default buffer ="\
<< end - start << endl ;

/1 Set up a buffer
of stream dat a2(" out put 2");
buffer = (char *)mall oc(sizeof (char)*500000);
dat a2. rdbuf () - >pubset buf (buf f er, 500000) ;
start = dcl ock();
for (int i =0; i < 10000; i++) {

data2 << "line: " << i << data << endl;

}
end = dcl ock();

data2.flush(); // Force a flush of data (not necessary)

cerr << "Time to wite with programbuffer =" \
<< end - start << endl

return O;

}

Compilei 02. C

% CC -0 i02 i02.C
Runi o2:

% yod i 02
Time to wite using default buffer = 0.0128506
Time to wite with programbuffer = 0.0237463

S-2396-20

Example Catamount Applications [14]

S-2396-20

Example 31: Improving performance of st dout

The following program improves the performance of the pri nt f () loop by
using set vbuf () with the mode of _| OFBF (fully buffered) and a buffer size
of 1024:

Module required:
Xt pe-t ar get - cat anount
Source code of C program (set vbuf 1. c):

#i ncl ude <stdio. h>
#i ncl ude <unistd. h>
#i ncl ude <stdlib. h>

int main(int argc, char *argv[])
{

int i,bsize,count;

char *buf;

i=1;
bsize = (i<argc) ? atoi(argv[i++]) : 1024;
count = (i<argc) ? atoi(argv[i++]) : 1024,

i f(bsize > 0) {
buf = mall oc(bsize);
setvbuf (stdout, buf, _|COFBF, bsize);

}

for(i=0;i<count;i++) {
printf("this is line %d\n",i);
}

exit(0);
}

Compile set vbuf 1. ¢ and create executable set vbuf 1:
% cc -o setvbufl setvbufl.c
Run set vbuf 1:

% yod setvbufl
this is line 0
this is line 1

147

Cray XT™ Series Programming Environment User's Guide

N

this is line
this is line 3

this is line 1021
this is line 1022
this is line 1023

Example 32: Using a PBS Pro job script

This example of a job script, scri pt 1, requests four processors to run
application pr ogr anil (see Example 23, page 136).

Modules required:

xt pe-t ar get - cat anount
pbs

Do not load the xt - pbs module. Unload it if it has been loaded.
Create scri pt 1.

% cat scriptl

#! / bi n/ bash

#

Define the destination of this job

as the queue naned "workqg":

#PBS -q workq

#PBS -1 nppwi dt h=4

Tell PBS Pro to keep both standard output and
standard error on the execution host:
#PBS -k eo

yod -sz 4 progranil

exit O

Set permissions to executable:
% chnod +x scriptl

Submit the job:

% qsub scriptl

The gsub command produces a batch job log file with output from pr ogr ami.
The job log file has the form scri pt 1. onnnnnn.

% cat scriptl. 04595
hell o from pe 0 of 4

148 S-2396-20

Example Catamount Applications [14]

S-2396-20

hell o from pe 3 of 4
hell o from pe 2 of 4
hell o from pe 1 of 4

PE 1. sizeof(long) = 8
PE 1. The answer is: 42

Example 33: Running an MPI program under PBS Pro

This example shows a batch script that runs the program si npl e. c (see
Example 21, page 133).

Modules required:

xt pe-t ar get - cat anount
pbs

Do not load the xt - pbs module. Unload it if it has been loaded.
Create scri pt 2:

% cat script2

#PBS -N s_j ob

#PBS -1 nppwi dt h=6
#PBS -j oe

cd $PBS_O WORKDI R
yod -sz 6 sinple

Submit the script to the PBS Pro batch system:
% qsub script2
Display the job results:

% cat s_j ob. 04596

hello frompe 0 of 6
hello frompe 3 of 6
hello frompe 2 of 6
hello frompe 5 of 6
hello frompe 1 of 6
hello frompe 4 of 6

Example 34: Running an MPI_REDUCE program under PBS Pro

This example shows a batch script that runs the program r educe. f 90 (Example
22, page 134).

149

Cray XT™ Series Programming Environment User's Guide

150

Modules required:

xt pe-t ar get - cat anount
pbs

Do not load the xt - pbs module. Unload it if it has been loaded.

Create a batch script, r un_r educe, verifying that the executable is in a directory
in the Lustre file system (see Section 2.4, page 11):

% cat run_reduce

#!'/ bi n/ sh

#PBS -1 nppwi dt h=2

#PBS -j oe

#PBS -1 wal | ti me=00: 30: 00
cd $HOVE/ pe_user/

echo "Running the Exanpl e reduce "
echo ""

dat e

echo ""

yod -sz 2 reduce

set permissions to executable:

% chnod +x run_reduce

Submit the script to the PBS Pro batch system:
% qsub run_reduce

Display the job results:

% cat run_reduce. 070977
Runni ng t he Exanpl e reduce

Wed May 9 13:36:52 CDT 2007

My PE: 1 M part: 2500
My PE: 0 M part: 2550
PE: 0 Total is: 5050

S-2396-20

Example Catamount Applications [14]

S-2396-20

Example 35: Using a script to create and run a batch job

This example script takes two arguments, the name of a program (shnen?®,
see Example 26, page 141) and the number of processors on which to run the
program. The script performs the following actions:

1. Creates a temporary file that contains a PBS Pro batch job script
2. Submits the file to PBS Pro
3. Deletes the temporary file

Modules required:

xt pe-t ar get - cat anount
pbs

Do not load the xt - pbs module. Unload it if it has been loaded.
Create script run123:

% cat runl23

#!'/ bi n/ csh
if ("$1" == "") then
echo "Usage: run [executable|script] [ncpus]”
exit
endi f
set n=1 # set default number of CPUs
if ("$2" I="") set n=%$2

cat > job.$$ <<EOT #creates the batch jobscript
#!/ bin/ csh
#PBS - N $1
#PBS -1 nppwi dt h=$n
#PBS -j oe
cd \$PBS_O WORKDI R
yod -sz $n -tlinmt 30 $1

ECT
gsub j ob. $$ # subnmit batch job
rmjob. $$

Set file permissions to executable:
% chnod +x runl23
Run the job script:

% ./runl23 shnmen 4

151

Cray XT™ Series Programming Environment User's Guide

152

List the job output:

% cat shnen®. 04611

PE 1 conput edsunr 6. 000000
PE 0 conput edsunr 6. 000000
PE 3 conput edsunr 6. 000000
PE 2 conput edsunr 6. 000000

Example 36: Running multiple sequential applications

To run multiple sequential applications, the number of processors you specify as
an argument to gsub must be equal to or greater than the largest number of
processors required by an invocation of yod in your script. For example, in job
scriptmul t _seq_qgk, the -1 mppwi dt h is 4 because the largest yod sz value
is 4.

Modules required:

xt pe-t ar get - cat anount
pbs

Do not load the xt - pbs module. Unload it if it has been loaded.
Create script mul t _seq_qgk:

#!/ bi n/ bash

#

Define the destination of this job

as the queue naned "workqg":

#PBS -q workq

#PBS -1 nppwi dt h=4

Tell PBS Pro to keep both standard output and
standard error on the execution host:
#PBS -k eo

yod -sz 2 progranil

yod -sz 3 progrant

yod -sz 4 shneml

yod -sz 2 shnen?

exit O

The script launches applications pr ogr anil (see Example 23, page 136),
pr ogr an® (see Example 24, page 137), shnemil (see Example 25, page 139), and
shmen? (see Example 26, page 141).

Set file permissions to executable:
% chnod +x mult _seq_gk

S-2396-20

Example Catamount Applications [14]

Run the script:
% qsub mult_seq_gk
List the output:

% cat nult_seq_gk. 04618

hell o from pe 0 of 2
hell o from pe 1 of 2
PE 1. sizeof(long) = 8

PE 1: The answer is: 42

PE 0 : The answer is: -1184

PE 2: Test passed.
PE 3. Test passed.
PE 0: Test passed.
PE 1: Test passed.
PE 1 conput edsunr 1. 000000
PE 0 conput edsunr 1. 000000

Example 37: Running multiple parallel applications

If you are running multiple parallel applications, the number of processors must
be equal to or greater than the total number of processors specified by calls to
yod. For example, in job script mul t _par gk, the-1 nppwi dt h valueis 11
because the total of the yod sz valuesis 11.

Modules required:

Xt pe-t ar get - cat anount
pbs

Do not load the xt - pbs module. Unload it if it has been loaded.
Create script nul t _par _qgk:

#!/ bi n/ bash

#

Define the destination of this job

as the queue naned "workqg":

#PBS -q workq

#PBS -1 nppw dt h=11

Tell PBS Pro to keep both standard output and
standard error on the execution host:
#PBS -k eo

yod -sz 2 programl &

yod -sz 3 progran? &

S-2396-20 153

Cray XT™ Series Programming Environment User's Guide

154

yod -sz 4 shneml &
yod -sz 2 shnen? &
exit O

The script launches applications pr ogr anil (see Example 23, page 136),
pr ogr an® (see Example 24, page 137), shnemil (see Example 25, page 139), and

shmen? (see Example 26, page 141).
Set file permissions to executable:

% chrmod +x mul t _par _gk

Run the script:

% qsub mult_par_gk

List the output:

% cat rmult_par_gk. 013422
hello frompe 0 of 2
hello frompe 1 of 2

PE 1. sizeof(long) = 8

PE 1: The answer is: 42

PE O : The answer is: -1184
PE 0: Test passed.

PE 3: Test passed.

PE 2: Test passed.

PE 1. Test passed.

PE O conput edsune 1. 000000
PE 1 conput edsum= 1. 000000

Example 38: Using xt gdb to debug a program

This example uses the GNU debugger, xt gdb, to debug a program.

Modules required:

Xt pe-t ar get - cat anount
xt gdb

Compile program hi . c:
%cc -g hi.c
Initiate a PBS Pro interactive session:

% qsub -1

S-2396-20

Example Catamount Applications [14]

S-2396-20

Run xt gdb:

% xt gdb yod a. out
Debuggi ng a. out
Target port is 33381

Pl ease wait while connecting to catanount...
target renpte :33381

Renot e debuggi ng usi ng : 33381
0x0000000000200001 in _start ()

Set breakpoints, resume execution, and quit the gdb session:

(gdb) b main

Breakpoi nt 3 at 0x205674: file hi.c, line 3.
(gdb) ¢

Cont i nui ng.

Breakpoint 3, main () at hi.c:3
3 printf("hello.c\n");

(gdb) ¢

Cont i nui ng.
hell o.c

Programexited with code 0377.

(gdb) quit
Done
Example 39: Using the high-level PAPI interface

PAPI provides simple high-level interfaces for instrumenting applications written
in C or Fortran. This example shows the use of the PAPI _start_count ers()
and PAPI _st op_count er s() functions.

155

Cray XT™ Series Programming Environment User's Guide

Modules required:

xt pe-tar get - cat anount
papi

Source code of papi _hl . c:

#i ncl ude <papi . h>
voi d main()

{

int retval, Events[2]= {PAPI_TOT_CYC, PAPI_TOT_I NS};

| ong_l ong val ues[2];

if (PAPI _start_counters (Events, 2) != PAPI_K) {
printf("Error starting counters\n");
exit(1);

}

/* Do sone conputation here... */

if (PAPI _stop_counters (values, 2) !'= PAPI_K) {
printf("Error stopping counters\n");
exit(1);

}

printf("PAPI _TOT_CYC = % 1d\n", values[0]);
printf("PAPI _TOT_INS = %1d\n", values[1]);
}

Compile papi _hl . c:

% cc -o papi_hl papi_hl.c
Run papi _hl :

% yod papi _hl
PAPI _TOT_CYC = 3287
PAPI _TOT_I NS = 287

Example 40: Using the low-level PAPI interface

PAPI provides an advanced low-level interface for instrumenting applications.
The PAPI library must be initialized before calling any of these functions;
initialization can be done by issuing either a high-level function call or
acallto PAPI _library_init(). This example shows the use of the

156 S-2396-20

Example Catamount Applications [14]

PAPI _create_eventset(),PAPlI _add_event ()), PAPI _start (), and
PAPI read() functions.

Modules required:

Xt pe-t ar get - cat anmount
papi

Source code of papi _I'|.c:

#i ncl ude <papi . h>

voi d main()

{
int EventSet = PAPI NULL;
| ong_l ong val ues[1];

[* Initialize PAPI library */

if (PAPI_library_init(PAPI _VER CURRENT) != PAPI _VER CURRENT) {
printf("Error initializing PAPI library\n");
exit(1);

}

/* Create Event Set */

if (PAPI _create_eventset (& ventSet) != PAPI _OK) {
printf("Error creating eventset\n");
exit(1);

}

/* Add Total Instructions Executed to eventset */

i f (PAPI _add_event (EventSet, PAPI_TOT_INS) != PAPI _OK) {
printf("Error adding event\n");
exit(1);

}

[* Start counting ... */

if (PAPI _start (EventSet) != PAPI_OK) {
printf("Error starting counts\n");
exit(1);

}

/* Do sone conputation here...*/

if (PAPI _read (EventSet, values) != PAPI _K) {
printf("Error stopping counts\n");

S-2396-20 157

Cray XT™ Series Programming Environment User's Guide

exit(1);

}

printf("PAPI _TOT_INS = %1d\n", values[0]);
}
Compile papi _I1.c:
%cc -o papi Il papi_Il.c
Run papi || :
% yod papi _I I

PAPI _TOT_INS = 153

Example 41: Using basic CrayPat functions

This example shows how to instrument a program, run the instrumented

program, and generate CrayPat reports.
Modules required:

xt pe-t ar get - cat anount
craypat

Compile the sample program pr og. f 90 and the routine it calls, wor k. c.

Source code of pr og. f 90:

program main
include 'nmpif.h'

call MPI _Init(ierr) ! Required

call MPI _Comm rank(MPI _COW WORLD, nype,ierr)
call MPI_Comm si ze(MPI _COW WORLD, npes, i err)

print *,"hello frompe', nype,' of',npes

do i =1+nype, 1000, npes ! Distribute the work

call work(i, mype)
enddo

call MPI_Finalize(ierr) ! Required
end

Source code of wor k. c:

void work_(int *N, int *MYPE)

158

S-2396-20

Example Catamount Applications [14]

S-2396-20

int n=*N, nype=* WPE;

if (n==42) {
printf("PE %l: sizeof(long) = %\ n", mype, si zeof (1 ong));
printf("PE %: The answer is: %\n", nmype, n);
}
}

Compile pr og. f 90 and wor k. ¢ and create executable pr ogr ant:

%cc -c work.c
% ftn -o programl prog.f90 work.o

Run pat _bui | d to generate instrumented program pr ogr aniL+pat :

% pat _build -u -g npi programl progranil+pat
INFO A trace intercept routine was created for the function
INFO a total of 39 function entry points were traced

The tracegroup (- g option) is npi .

Set environment variable PAT_RT_EXPFI LE_PER PROCESS:
% set env PAT_RT_EXPFI LE_PER PROCESS 1

Run pr ogr anml+pat :

% yod -sz 4 progranil+pat
CrayPat/ X: Version 3.2 Revision 799 04/23/07 08:02: 31

hell o from pe 3 of 4
hell o from pe 1 of 4
hell o from pe 2 of 4
hell o from pe 0 of 4

PE 1: sizeof(long) = 8

PE 1: The answer is: 42

Experinment data file witten:

/1 us/ ni d00007/ user 1/ cat anount/ pr ogr anil+pat +87t d. xf

Note: When executed, the instrumented executable creates directory

"work '

progname+pat +PIDkeyletters that contains one or more data files with a . xf
suffix. PID is the process ID that was assigned to the instrumented program

at run time.

159

Cray XT™ Series Programming Environment User's Guide

Run pat _r eport to generate reports pr ogr amil. r pt 1 (using default
pat _report options) and pr ogr amil. r pt 2 (using the - O cal | t r ee option).

% pat _report progranml+pat +87td. xf > programl.rptl

Data file 4/4: [......]
% pat _report -O calltree progranml+pat+87td. xf > programl.rpt2
Data file 4/4: [....]

List progrant. r pt 1:

CrayPat/ X: Version 3.2 Revision 799 (xf 784) 04/23/07 08:02:31
Experiment: trace

Experinent data file:
/1 us/ ni d0O0007/ user 1/ cat anount / progr aniL+pat +87t d. xf (RTS)

Original program /1 us/nid00007/ user 1/ catanmount/ programl
Instrunmented with: pat_build -u -g npi progranl progranil+pat
Instrumented program /Il us/ni d0O0007/ user 1/ cat anobunt/ progr anil+pat
Program i nvocation: progranil+pat
Nurmber of PEs: 4
Exit Status: 0 PEs: 0-3
Runtime environnment variabl es:

MPI CHBASEDI R=/ opt / xt - npt/ 2. 0. 06/ npi ch2- 64

MPI CH DI R=/ opt / xt - npt / 2. 0. 06/ npi ch2- 64/ P2

MPI CH_DI R_FTN_DEFAULT64=/ opt / xt - npt / 2. 0. 06/ npi ch2- 64/ P2W

Report time environnent vari abl es:
PAT_ROOT=/ opt / xt-t ool s/ craypat/ 3. 2. 1/ cpat x

Report command |ine options: <none>

System nane, type, and speed: xtl x86_64 2400 MHz
Qperating system catanmpunt 1.0 2.0

Esti mated mi ni mum overhead per call of a traced function,

160 S-2396-20

Example Catamount Applications [14]

whi ch was subtracted fromthe data shown in this report
(for raw data, use the option: -s overhead=incl ude):
Ti me 0.617 m croseconds

Nunmber of traced functions: 52
Notes for table 1:

Tabl e option:
-Oprofile
Options inplied by table option:
-d ti%@.05,ti,inb_ti,inmb_ti%tr -b gr,fu, pe=H DE

Options for related tables not shown by default:
-O | oad_bal ance
-Ocallers
-O callers+src
-Ocalltree
-Ocalltree+src

This table shows only lines with Ti me% > 0. 05.

Percent ages at each level are relative
(for absol ute percentages, specify: -s percent=a).

Table 1: Profile by Function G oup and Function

Time % | Time |Inmb. Tine | Imb. | Calls | Group
| | | Time % | | Function
| | | | | PE='"H DE
100. 0% | 0.003184 | - -- | 2628 | Total
| = = m i
| 98.1% | 0.003124 | - -- | 1012 | USER
[= oo
|| 97.0%] 0.003031 | 0.000113 | 4.8% | 4 | MAI N_
| 2.3%| 0.000070 | 0.000193 | 97.7%| 1000 |work_
| 0.7% | 0.000021 | 0.000000 | 0.9% | 4 |exit
|] 0.1% | 0.000002 | 0.000000 | 4.0% | 4 | main
| | = ===
| 0.1% | 0.000002 | - - 16 | MPI
R e P LT e LT RERTEE
|| 31.5%]| 0.000001 | 0.000000 | 7.3% | 4 | npi_init_

S-2396-20 161

Cray XT™ Series Programming Environment User's Guide

162

|| 24.1%]| 0.000000 | 0.000000 | 8.4%| 4 | mpi_conm rank_
|| 23.6%]| 0.000000 | 0.000000 | 5.7%]| 4 | npi_comm size_
|| 20.8%]| 0.000000 | 0.000000 | 22.3%| 4 |npi_finalize
| == ===

<sni p>

Table 3: ProgramWall dock Tine

Process | PE
Time |

0. 256492 | Tot al

| 0.280461 | pe
| 0.264507 | pe.
| 0.248539 | pe.
| 0.232462 | pe.

w N O

List progr ant. r pt 2:

CrayPat/X: Version 3.2 Revision 799 (xf 784) 04/23/07 08:02:31
Experinment: trace

Experinment data file:
/1 us/ ni d00007/ user 1/ cat anount / progr aniL+pat +87td. xf (RTS)

Original program /1 us/nid00007/ user 1/ catanmount/ programl
Instrumented with: pat_build -u -g nmpi programl progranil+pat
Instrunented program /Il us/ni d0O0007/ user 1/ cat anount/ progr anil+pat
Program i nvocation: progranil+pat

Nurmber of PEs: 4

Exit Status: 0 PEs: 0-3

Runtime environment vari abl es:

MPl CHBASEDI R=/ opt / xt - npt / 2. 0. 06/ npi ch2- 64
MPI CH_DI R=/ opt/ xt - npt / 2. 0. 06/ npi ch2- 64/ P2

S-2396-20

Example Catamount Applications [14]

MPI CH_DI R_FTN_DEFAULT64=/ opt / xt - npt / 2. 0. 06/ npi ch2- 64/ P2W

Report time environnent vari abl es:
PAT_ROOT=/ opt/ xt-t ool s/ craypat/ 3. 2. 1/ cpat x

Report command line options: -Ocalltree
System nane, type, and speed: xtl x86_64 2400 MHz
Operating system catamount 1.0 2.0
Esti mated mi ni mum overhead per call of a traced function,
whi ch was subtracted fromthe data shown in this report
(for raw data, use the option: -s overhead=incl ude):
Ti me 0.617 microseconds
Nurmber of traced functions: 52
Notes for table 1:
Tabl e option:
-Ocalltree
Options inplied by table option:
-d ti%@. 05, cumti%ti,tr -b ct, pe=H DE

This table shows only lines with Ti me% > 0. 05.

Percent ages at each level are relative
(for absol ute percentages, specify: -s percent=a).

Table 1: Function Calltree View

Time % | Cum | Time | Calls |Calltree
| Time % | | | PE='H DE

100.0% | 100.0% | 0.003184 | 2628 | Total
98.2% | 98.2%| 0.003126 | 1028 |main
99.3% | 99.3%| 0.003104 | 1020 | MAIN_

| 97.7%| 97.7%]| 0.003031 | 4 | MAIN_(excl usi ve)
| 2.3%| 99.9%]| 0.000070 | 1000 |work_

S-2396-20 163

Cray XT™ Series Programming Environment User's Guide

I

| 0.7%| 99.9% | 0.000021 | 4 |exit

|] 0.1%| 100.0% | 0.000002 | 4 | mai n(excl usi ve)

| | = ===

| 1.3%| 99.5% | 0.000042 | 800 | __do_gl obal _ctors
| 0.5% | 100.0% | 0.000016 | 800 |exit

I

Example 42: Using hardware performance counters

This example uses the same instrumented program as Example 41, page 158 and
generates reports showing hardware performance counter (HWPC) information.

Modules required:

Xt pe-t ar get - cat anmount
craypat

Collect HWPC event set 1 information and generate report pr ogr amil. r pt 3 (for
a list of predefined event sets, see the hwpc(3) man page):

% set env PAT_RT_HWPC 1
% yod -sz 4 progranil+pat
CrayPat/X: Version 3.1 Revision 363 08/28/06 16:25:58

hell o from pe 3 of 4
hell o from pe 1 of 4
hell o from pe 2 of 4
hell o from pe 0 of 4

PE 1: sizeof(long) = 8

PE 1: The answer is: 42

Experinent data directory witten:

[uf s/ hone/ user s/ user 1/ pat/ pr ogr aniL+pat +2518t d

% pat _report programl+pat +2518td > progranil. rpt3
Data file 4/ 4:

List progr ant. r pt 3:

CrayPat/X: Version 3.1 Revision 609 (xf 556) 01/23/07 11:48: 46
Experinent: trace

Experiment data file:
[uf s/ home/ user s/ user 1/ gui de_t est/ progr anil+pat +142td/ *. xf (RTS)

Original program /ufs/home/users/userl/guide_test/prograndl

S-2396-20

Example Catamount Applications [14]

I nstrunented program /ufs/hone/ users/userl/guide_test/progranml+pat
Program i nvocation: progranil+pat

Nurmber of PEs: 4

Exit Status: 0 PEs: 0-3

Runtine environnent vari abl es:
MPI CHBASEDI R=/ opt / xt - mpt / 1. 4. 48/ npi ch2- 64
MPI CH DI R=/ opt / xt - npt / 1. 4. 48/ npi ch2- 64/ P2
PAT_BUI LD_ASYNC=0
PAT_ROOT=/ opt / xt-t ool s/ craypat/ 3. 1. 2/ cpat X
PAT_RT_EXPFI LE_PER PROCESS=1
PAT_RT_HWPC=1

Report time environnent vari abl es:
PAT_ROOT=/ opt/ xt-t ool s/ craypat/ 3. 1. 2/ cpat x

Report command |ine options: <none>
Host nanme and type: sysl x86_64 2400 MHz
Qperating system catanmpunt 1.0 2.0

Har dwar e performance counter events:
PAPI _TLB DM Data translation | ookaside buffer m sses
PAPI L1 DCA Level 1 data cache accesses
PAPI _FP_OPS Floating point operations
DC M SS Data Cache M ss
User_Cycles Virtual Cycles

Esti mated mi ni nrum overhead per call of a traced function,
whi ch was subtracted fromthe data shown in this report

(for raw data, use the option: -s overhead=incl ude):
PAPI _TLB_DM 5.000 misses
PAPI L1 DCA 1318.298 ops
PAPI _FP_OPS 0.000 ops
DC_M SS 4.509 ops
User _Cycl es 2105.166 cycles
Ti me 0.877 microseconds

S-2396-20 165

Cray XT™ Series Programming Environment User's Guide

166

Traced functions:

MAI N_ ...lusers/user1/guide_test/prog.f90
MPI _Abort ==NA==

<sni p>
wor k_ ...lusers/userl1/guide_test/work.c

Notes for table 1:

Tabl e option:
-Oprofile
Options inplied by table option:
-d tiv@. 05,ti,inb ti,inb_ti%tr,P -b ex,gr,fu, pe=H DE

Options for related tables not shown by default:
-O | oad_bal ance
-Ocallers
-Ocallers+src
-Ocalltree
-Ocalltree+src

This table shows only Ilines with Ti ne% > 0. 05.
Percent ages at each level are relative
(for absol ute percentages, specify: -s percent=a).
Table 1: Profile by Function G oup and Function

Experiment=1 / Goup / Function / PE='"H DE

Total s for program

Ti me% 100. 0%

Ti me 0. 002658

I mb. Ti me --

I mb. Ti me% --

Calls 17028

PAPI _TLB_DM 24.674M sec 66159 m sses
PAPI _L1_DCA 5042. 230M sec 13519803 ops
PAPI _FP_OPS 0. 183M sec 490 ops

S-2396-20

Example Catamount Applications [14]

DC_M SS 22.031M sec 59073 ops
User tine 0. 003 secs 6435154 cycl es
Utilization rate 100. 0%
HWFP Qps / Cycles 0. 00 ops/cycle
HWFP Ops / User tine 0. 183M sec 490 ops 0. 0%peak
HWFP Ops / WCT 0. 183M sec
Conputation intensity 0. 00 ops/ref
LD & ST per TLB m ss 204. 35 ops/niss
LD & ST per D1 miss 228.87 ops/niss
D1 cache hit ratio 99. 6%
% TLB ni sses / cycle 0.3%

USER
Ti me% 62. 7%
Ti me 0. 001665
I mb. Ti me --
I mb. Ti me% --
Calls 1012
PAPI _TLB DM 15. 488M sec 25796 m sses
PAPI _L1_DCA 4702.512M sec 7832225 ops
PAPI _FP_OPS 0. 294M sec 490 ops
DC_M SS 6. 107M sec 10172 ops
User tine 0. 002 secs 3997298 cycl es
Utilization rate 100. 0%
HWFP Ops / Cycles 0. 00 ops/cycle
HWFP Ops / User tine 0. 294M sec 490 ops 0. 0%peak
HWFP Ops / WCT 0. 294M sec
Conputation intensity 0. 00 ops/ref
LD & ST per TLB mi ss 303. 62 ops/niss
LD & ST per D1 niss 769. 98 ops/niss
Dl cache hit ratio 99. 9%
% TLB ni sses / cycle 0.2%

USER / work_
Ti me% 43. 4%
Ti me 0. 000723
I nb. Ti me 0. 002141
I mb. Ti me% 99. 7%
Calls 1000
PAPI _TLB_ DM 0. 291M sec 211 mi sses
PAPI _L1_DCA 4228.537M sec 3061262 ops

S-2396-20

167

Cray XT™ Series Programming Environment User's Guide

168

PAPI _FP_OPS 0 ops
DC_M SS 0. 724M sec 524 ops
User tine 0. 001 secs 1737487 cycl es
Utilization rate 100. 0%
HWFP Ops / Cycles 0. 00 ops/cycle
HWFP Ops / User tine 0 ops 0. 0%peak
HWFP Qps / WCT
Conputation intensity 0. 00 ops/ref
LD & ST per TLB mi ss 14508. 35 ops/ m ss
LD & ST per D1 miss 5842. 10 ops/mniss
Dl cache hit ratio 100. 0%
% TLB ni sses / cycle 0. 0%

USER / MAI N_
Ti me% 31. 4%
Ti me 0. 000523
I nb. Ti me 0. 000098
I mb. Ti me% 21. 0%
Calls 4
PAPI _TLB_ DM 10. 621M sec 5527 mi sses
PAPI _L1_DCA 4481. 995M sec 2332287 ops
PAPI _FP_OPS 0.411M sec 214 ops
DC_M SS 6. 378M sec 3319 ops
User tine 0. 001 secs 1248883 cycl es
Uilization rate 99. 5%
HWFP Ops / Cycles 0. 00 ops/cycle
HWFP Ops / User tine 0.411M sec 214 ops 0. 0%peak
HWFP Qps / WCT 0. 409M sec
Conputation intensity 0. 00 ops/ref
LD & ST per TLB m ss 421. 98 ops/niss
LD & ST per D1 niss 702.71 ops/mniss
D1 cache hit ratio 99. 9%
% TLB ni sses / cycle 0.1%

USER / exit
Ti me% 25. 1%
Ti ne 0. 000417
I nb. Ti me 0. 000015
I mb. Ti me% 4.5%
Calls 4
PAPI _TLB_ DM 47.731M sec 20026 mi sses

S-2396-20

Example Catamount Applications [14]

PAPI _L1_DCA 5805. 125M sec 2435599 ops
PAPI _FP_OPS 0. 648M sec 272 ops
DC_M SS 14. 913M sec 6257 ops
User tine 0. 000 secs 1006944 cycl es
Uilization rate 100. 0%
HWFP Ops / Cycles 0. 00 ops/cycle
HWFP Qps / User tine 0. 648M sec 272 ops 0. 0%peak
HWFP Qps / WCT 0. 648M sec
Conputation intensity 0. 00 ops/ref
LD & ST per TLB m ss 121. 62 ops/m ss
LD & ST per D1 niss 389. 26 ops/niss
D1 cache hit ratio 99. 7%
% TLB nisses / cycle 0.5%

USER / main
Ti me% 0.1%
Ti ne 0. 000002
I nb. Ti me 0. 000000
I mb. Ti me% 2.3%
Calls 4
PAPI _TLB_DM 19. 281M sec 32 m sses
PAPI L1 _DCA 1853. 963M sec 3077 ops
PAPI _FP_OPS 2.410M sec 4 ops
DC_M SS 43. 382M sec 72 ops
User tine 0. 000 secs 3983 cycl es
Uilization rate 95. 3%
HWFP Ops / Cycles 0. 00 ops/cycle
HWFP Qps / User tine 2.410M sec 4 ops 0. 0%peak
HWFP Qps / WCT 2.298M sec

Conputation intensity
LD & ST per TLB m ss
LD & ST per D1 niss

0. 00 ops/ref
96. 16 ops/niss
42.74 ops/ m ss

D1 cache hit ratio 97. 7%
% TLB nmi sses / cycle 0.2%
MPI
Ti me% 0.1%
Ti me 0. 000003
I nb. Ti e --
I mb. Ti me% - -
Calls 16

S-2396-20

169

Cray XT™ Series Programming Environment User's Guide

170

HWFP Qps / WCT
Conputation intensity
LD & ST per TLB m ss
LD & ST per D1 miss

PAPI _TLB DM 18. 966M sec 51 m sses
PAPI _L1_DCA 3298. 175M sec 8869 ops
PAPI _FP_OPS 0 ops
DC_M SS 68. 053M sec 183 ops
User tine 0. 000 secs 6454 cycl es
Uilization rate 97. 3%
HWFP Qps / Cycles 0. 00 ops/cycle
HWFP Qps / User tine 0 ops 0. 0%eak
HWFP Qps / WCT
Conputation intensity 0. 00 ops/ref
LD & ST per TLB m ss 173.90 ops/m ss
LD & ST per D1 niss 48. 46 ops/ mi ss
D1 cache hit ratio 97. 9%
% TLB ni sses / cycle 0.2%

MPl / npi _conm size_
Ti me% 28. 8%
Ti ne . 000001
I mb. Ti me . 000000
I mb. Ti me% 8. 9%
Calls 4
PAPI _TLB DM 13. 741M sec 11 mi sses
PAPI L1 _DCA 2503. 370M sec 2004 ops
PAPI _FP_OPS 0 ops
DC M SS 58. 712M sec 47 ops
User tine 0. 000 secs 1921 cycles
Uilization rate 100. 0%
HWFP Qps / Cycles 0. 00 ops/cycle
HWFP Qps / User tine 0 ops 0. 0%peak

0. 00 ops/ref
182. 18 ops/ mi ss
42. 64 ops/ m ss

Dl cache hit ratio 97. 7%

% TLB ni sses / cycle 0.1%
MPl / npi_init_

Ti me% 24. 1%

Ti ne . 000001

I mb. Ti me . 000000

I mb. Ti me% 10. 7%

S-2396-20

Example Catamount Applications [14]

Calls

PAPI _TLB_DM

PAPI _L1_DCA

PAPI _FP_OPS

DC M SS

User tine

Utilization rate
HWFP Ops / Cycles
HWFP Qps / User tine
HWFP Qps / WCT
Conputation intensity
LD & ST per TLB m ss
LD & ST per D1 miss

13. 413M sec 8 m sses
4590. 430M sec 2738 ops
0 ops
80. 475M sec 48 ops

0. 000 secs 1432 cycl es

0. 00 ops/cycle
0 ops 0. 0%peak

0. 00 ops/ref
342. 25 ops/niss
57.04 ops/niss

D1 cache hit ratio 98. 2%
% TLB ni sses / cycle 0.1%
MPl / npi_finalize_
Ti me% 24. 1%
Ti me 0. 000001
I mb. Ti me 0. 000000
I mb. Ti me% 13. 2%
Calls 4
PAPI _TLB DM 21.737M sec 14 m sses
PAPI L1 _DCA 3372. 344M sec 2172 ops
PAPI _FP_OPS 0 ops
DC M SS 74.527M sec 48 ops
User tine 0. 000 secs 1546 cycl es
Utilization rate 96. 5%
HWFP Qps / Cycles 0. 00 ops/cycle
HWFP Ops / User tine 0 ops 0. 0%peak

HWFP Qps / WCT
Conputation intensity
LD & ST per TLB mi ss
LD & ST per D1 miss

0. 00 ops/ref
155. 14 ops/ mi ss
45. 25 ops/ mi ss

D1 cache hit ratio 97. 8%

% TLB ni sses / cycle 0.2%
MPl / npi_commrank_

Ti me% 22. 9%

Ti me 0. 000001

I mb. Ti e 0. 000000

S-2396-20

171

Cray XT™ Series Programming Environment User's Guide

I mb. Ti me% 11. 6%

Calls 4

PAPI _TLB_DM 27.777M sec 18 misses
PAPI _L1_DCA 3016. 878M sec 1955 ops

PAPI _FP_COPS 0 ops
DC M SS 61. 726M sec 40 ops

User tine 0. 000 secs 1555 cycl es
Utilization rate 100. 0%

HWFP Qps / Cycles 0. 00 ops/cycle
HWFP Ops / User tine 0 ops
HWFP Qps / WCT

Conputation intensity 0. 00 ops/ref
LD & ST per TLB mi ss 108. 61 ops/mi ss
LD & ST per D1 miss 48. 88 ops/ m ss
D1 cache hit ratio 98. 0%

% TLB ni sses / cycle 0.3%

0. 0%peak

Notes for table 2:

Tabl e option:
- O heap_program

Options inplied by table option:
-d U I F,NF, FM -b ex, pe

Table 2: Heap Usage at Start and End of Main Program

MB Heap | MB Heap | Heap | Max Free | Experinent=1
Used at | Free at | Not | Chj ect at | PE
Start | Start | Freed | End |
I I

MB | I
94.656 | 3875.344 | 0.023 | 3875.321 | Tota

| 94.660 | 3875.340 | 0.023 | 3875.316 |pe.O
| 94.654 | 3875.346 | 0.023 | 3875.322 |pe.1
| 94.654 | 3875.346 | 0.023 | 3875.322 |pe.3
| 94.654 | 3875.346 | 0.023 | 3875.322 |pe.?2
I

S-2396-20

Example Catamount Applications [14]

Notes for table 3:

Tabl e option:
-O programtine

Options inplied by table option:
-d pt -b ex, pe

Table 3: ProgramWall dock Tine

Process | Experiment =1
Time | PE

0. 014952 | Tot al

0.016712 |pe. 1
0. 016441 | pe. 2
0.013384 | pe.0
0.013271 | pe. 3

Collect information about translation lookaside buffer (TLB) misses
(PAPI _TLB DM and generate report pr ogr anmi. r pt 4:

% setenv PAT_RT_HWPC PAPI _TLB_DM
% yod -sz 4 progranil+pat

hell o from pe 1 of 4
hell o from pe 2 of 4
hell o from pe 3 of 4
hell o from pe 0 of 4

PE 1: sizeof(long) = 8

PE 1: The answer is: 42

Experinment data directory witten:

[uf s/ hone/ user s/ user 1/ pat/ pr ogr aniL+pat +2520t d

% pat _report programnl+pat +2520td > progranil.rpt4
Data file 4/4: [.......]

List progr antl. r pt 4:

CrayPat/X: Version 3.1 Revision 609 (xf 556) 01/23/07 11:48: 46
Experiment: trace

Experinent data file:

S-2396-20 173

Cray XT™ Series Programming Environment User's Guide

174

[uf s/ home/ user s/ user 1/ gui de_t est/ progr anil+pat +143td/ *. xf (RTS)
Original program /ufs/home/users/userl1/guide_test/prograndl
I nstrumented program /ufs/home/users/userl/guide_test/programl+pat
Program i nvocation: progranil+pat
Nunber of PEs: 4
Exit Status: 0 PEs: 0-3
Runti ne environnent vari abl es:

MPI CHBASEDI R=/ opt / xt - npt/ 1. 4. 48/ npi ch2- 64

MPI CH DI R=/ opt / xt - npt / 1. 4. 48/ npi ch2- 64/ P2

PAT_BUI LD _ASYNC=0

PAT_ROOT=/ opt / xt -t ool s/ craypat/ 3. 1. 2/ cpat x

PAT_RT_EXPFI LE_PER_PROCESS=1

PAT_RT_HWPC=PAPI _TLB_DM

Report time environnent variabl es:
PAT_ROOT=/ opt / xt -t ool s/ craypat/ 3. 1. 2/ cpat x

Report command |ine options: <none>
Host name and type: sysl x86_64 2400 MHz
Operating system catamount 1.0 2.0
Har dwar e performance counter events:
PAPI _TLB DM Data translation | ookaside buffer m sses

User _Cycles Virtual Cycles

Esti mated mi ni nrum overhead per call of a traced function,
whi ch was subtracted fromthe data shown in this report

(for raw data, use the option: -s overhead=incl ude):
PAPI _TLB_DM 5.000 misses
User _Cycl es 1977.854 cycles
Ti me 0. 827 m croseconds

Traced functions:
MAI N_ ...lusers/user1/guide_test/prog.f90
MPI _AbOI't ==NA==

S-2396-20

Example Catamount Applications [14]

<sni p>:
wor k_ ...lusers/userl1/guide_test/work.c

Notes for table 1:

Tabl e option:
-Oprofile
Options inplied by table option:
-d tiY%@.05,ti,inmb ti,inmb_ti%tr,P -b ex,gr,fu, pe=H DE

Options for related tables not shown by default:
- O | oad_bal ance
-Ocallers
-O callers+src
-Ocalltree
-Ocalltree+src

This table shows only Ilines with Ti me% > 0. 05.
Percent ages at each level are relative
(for absol ute percentages, specify: -s percent=a).
Table 1: Profile by Function G oup and Function

Experiment=1 / Goup / Function / PE='"H DE

Total s for program

Ti me% 100. 0%

Ti ne 0. 002753

I nb. Ti me --

I mb. Ti me% --

Calls 17028

PAPI _TLB DM 24. 252M sec 67725 m sses
User tine 0. 003 secs 6702061 cycl es
Utilization rate 100. 0%

% TLB nisses / cycle 0.3%

USER

S-2396-20 175

Cray XT™ Series Programming Environment User's Guide

176

I mb. Ti e

I mb. Ti me%

Calls

PAPI _TLB_ DM 13. 745M sec
User tine 0. 002 secs
Uilization rate

68. 5%
0.001885

1012
25902 mi sses
4522640 cycles

100. 0%

% TLB ni sses / cycle 0.1%
USER / MAIN_

Ti me% 41. 7%

Ti me 0. 000786

I mb. Ti e 0. 000098

I mb. Ti me% 14. 7%

Calls 4

PAPI _TLB DM 7.102M sec 5570 m sses
User tine 0. 001 secs 1882248 cycl es

Uilization rate

99. 8%

% TLB ni sses / cycle 0.1%
USER / work_
Ti me% 38. 7%
Ti me 0. 000730
I mb. Ti me 0. 002164
I mb. Ti me% 99. 7%
Calls 1000
PAPI _TLB_ DM 0. 383M sec 280 mi sses
User tine 0. 001 secs 1753760 cycl es

Uilization rate

100. 0%

% TLB ni sses / cycle 0.0%
USER / exit

Ti me% 19.5%

Ti ne 0. 000367

I nb. Ti me 0. 000011

I mb. Ti me% 3.8%

Calls 4

PAPI _TLB DM 54. 438M sec 20023 mi sses

S-2396-20

Example Catamount Applications [14]

User tine 0. 000 secs 882755 cycl es
Utilization rate 100. 0%

% TLB nmisses / cycle 0.6%

USER / main

Ti ne% 0.1%

Ti ne 0. 000002

I mb. Ti me 0. 000000

I mb. Ti me% 2.9%

Calls 4

PAPI _TLB DM 17. 953M sec 29 m sses
User tine 0. 000 secs 3877 cycles
Utilization rate 97. 4%

% TLB ni sses / cycle 0.2%

MPI

Ti me% 0.1%

Ti ne 0. 000003

I mb. Ti me --

I mb. Ti me% --

Calls 16

PAPI _TLB DM 14. 478M sec 38 nisses
User tine 0. 000 secs 6299 cycles
Uilization rate 95. 2%

% TLB ni sses / cycle 0.2%

Ti me% 34. 7%
Ti me 0. 000001
I mb. Ti e 0. 000000
I mb. Ti me% 8. 7%
Calls 4
PAPI _TLB DM 12.902M sec 12 mi sses
User tine 0. 000 secs 2232 cycles
Uilization rate 97. 1%
% TLB nmi sses / cycle 0.1%

MPl / npi_init_

S-2396-20 177

Cray XT™ Series Programming Environment User's Guide

Ti me 0. 000001
I nb. Ti me 0. 000000
I mb. Ti me% 11. 8%
Calls 4
PAPI _TLB DM 7.078M sec 4 m sses
User tine 0. 000 secs 1356 cycl es
Utilization rate 85. 5%
% TLB nmisses / cycle 0.1%

Ti me% 22. 9%
Ti ne 0. 000001
I nb. Ti me 0. 000000
I mb. Ti me% 11.8%
Calls 4
PAPI _TLB DM 14. 037M sec 9 nisses
User tine 0. 000 secs 1539 cycl es
Utilization rate 100. 0%
% TLB nmi sses / cycle 0.1%

Ti me% 18. 3%
Ti ne 0. 000001
I mb. Ti me 0. 000000
I mb. Ti me% 9. 4%
Calls 4
PAPI _TLB DM 26.627M sec 13 mi sses
User tine 0. 000 secs 1172 cycl es
Uilization rate 96. 5%
% TLB ni sses / cycle 0.3%

Notes for table 2:

Tabl e option:
- O heap_program

Options inplied by table option:
-d U I F,NF, FM -b ex, pe

178 S-2396-20

Example Catamount Applications [14]

Table 2: Heap Usage at Start

MB Heap | MB Heap | Heap |
Used at | Free at |
Start | Start | Freed |
I I

VB
94.656 | 3875.344 | 0.023

94.660 | 3875.340 | 0.023
94.654 | 3875.346 | 0.023

94.654 | 3875.346 | 0.023

and End of Main Program

Max Free | Experinent=1

Not | Chject at | PE

End |
I

3875. 321 | Tot al
3875.316 |pe. 0
3875.322 | pe. 1
3875.322 | pe. 3
3875. 322 | pe. 2

I
I
| 94.654 | 3875.346 | 0.023
I
I

Notes for table 3:

Tabl e option:
-O programtine

Options inplied by table option:

-d pt -b ex, pe

Table 3: Program Wall d ock

Process | Experiment =1
Time | PE

0. 014993 | Tot al

. 018695 | pe. 1
013868 | pe. 2
13706 | pe. 0

3

.0
. 013704 | pe.

S-2396-20

Ti me

179

Cray XT™ Series Programming Environment User's Guide

180 S-2396-20

glibc Functions Supported in CNL [A]

The glibc functions and system calls supported in CNL are listed in Table 9. For
further information, see the man pages.

Note: Some f cnt | () commands are not supported for applications that use
Lustre. The supported commands are:

F_GETFL
F_SETFL
F_GETLK
F_SETLK

F_SETLKW64

F_SETLKW
F_SETLK64

Table 9. Supported glibc Functions for CNL

a64l
addmntent
argz_add_sep

argz_create_sep

argz_next
asctime_r
atoi

bcmp
bsearch
catclose
chdir
clearerr
confstr

creat

S-2396-20

abort

alarm
argz_append
argz_delete
argz_replace
asprintf

atol

bcopy

btowc
catgets

chmod

clearerr_unlocked

copysign
ctime

abs

alphasort
argz_count
argz_extract
argz_stringify
atexit

atoll
bind_textdomain_codeset
bzero

catopen
chown

close
copysignf

ctime_r

access
argz_add
argz_create
argz_insert
asctime

atof

basename
bindtextdomain
calloc

cbc_crypt
clearenv
closedir
copysignl
daemon

181

Cray XT™ Series Programming Environment User's Guide

daylight
dgettext

div

dup

ecvt

endttyent
envz_get
erand48
fchmod

fentl

fdopen
ferror_unlocked
ffsl

fgetgrent
fgets_unlocked
fgetws_unlocked
flockfile

fputc

fputwec

fread

frexp

fsetpos

ftello
ftrylockfile
fwrite

getc

getcwd
getdirentries
geteuid

getgid

182

dcgettext
difftime
dngettext

dup?2

ecvt r
endusershell
envz_merge

err

fchown

fevt

feof

fflush

ffsll

fgetpos

fgetwc

fileno

fnmatch
fputc_unlocked
fputwc_unlocked
fread_unlocked
fscanf

fstat

ftime
funlockfile
fwrite_unlocked
getc_unlocked
getdate
getdomainname
getfsent
gethostname

dcngettext
dirfd

dprintf

dysize

endfsent
envz_add
envz_remove
errx

fclose

fevt r

feof _unlocked
fflush_unlocked
fgetc

fgetpwent
fgetwc_unlocked
fileno_unlocked
fopen

fputs

fputws

free

fseek

fsync

ftok

fwide

gevt

getchar
getdate_r
getegid

getfsfile

getline

des_setparity
dirname

drand48
ecb_crypt
endmntent
envz_entry
envz_strip

exit

fcloseall
fdatasync

ferror

ffs
fgetc_unlocked
fgets

fgetws

finite

fprintf
fputs_unlocked
fputws_unlocked
freopen

fseeko

ftell

ftruncate
fwprintf
get_current_dir_name
getchar_unlocked
getdelim

getenv

getfsspec
getlogin

S-2396-20

glibc Functions Supported in CNL [A]

getlogin_r

getopt_long_only

getrlimit
getttyent

getw

getwchar_unlocked

hasmntopt
hsearch
imaxabs
ioctl
isblank
isinf
ispunct
iswalpha
iswdigit
iswpunct
isxdigit
labs

link
localtime_r
Isearch
mblen
mbsnrtowcs
memccpy
memfrob
memset
mkstemp
modfl
nl_langinfo

opendir

S-2396-20

getmntent
getpagesize
getrusage
getttynam
getwc
gmtime
hcreate
iconv
index
isalnum
iscntrl
islower
isspace
iswblank
iswgraph
iswspace
jrand48
Icong48
llabs

lockf
Iseek
mbrlen
mbsrtowcs
memchr
memmem
mkdir
mktime
mrand48
nrand48

passwd2des

getopt
getpass
gettext
getuid

getwc_unlocked

gmtime_r
hcreate r
iconv_close
initstate
isalpha
isdigit
isnan
isupper
iswentrl
iswlower
iswupper
kill

Idexp
localeconv
longjmp
Istat
mbrtowc
mbstowcs
memcmp
memmove
mkdtemp
modf
nanosleep
on_exit

pclose

getopt_long
getpid
gettimeofday
getusershell
getwchar
gsignal
hdestroy
iconv_open
insque
isascii
isgraph
isprint
iswalnum
iswctype
iswprint
iswxdigit
164a

Ifind
localtime
Irand48
malloc
mbsinit
mbtowc
memcpy
memrchr
mknod
modff
ngettext
open
perror

183

Cray XT™ Series Programming Environment User's Guide

pread
putc_unlocked
putpwent
putwc_unlocked
gecvt

ggevt
random
readdir
realpath
regfree
rename
rmdir
seekdir
setenv
setitimer
setlogmask
setttyent
sigaction
sigemptyset
signal

sleep
srand48

stat

strcat
strepy
strerror_r
strlen
strncpy

1 see Section 4.3.5, page 36.

184

printf
putchar
puts
putwchar
gecvt_r
gsort
re_comp
readlink
regcomp
registerrpc
rewind
scandir
setbuf
seteuid
setimp
setmntent
setuid
sigactionl
sigfillset
sigpending
snprintf
srandom
stpcpy
strchr
strespn
strfmon
strncasecmp

strndup

psignal
putchar_unlocked
putw
putwchar_unlocked
gfevt

raise

re_exec
readv
regerror
remove
rewinddir
scanf
setbuffer
setfsent
setlinebuf
setrlimit
setusershell
sigaddset
sigismember
sigprocmask
sprintf
sscanf
stpncpy
strcemp
strdup

strfry
strncat

strnlen

putc
putenv
putwc
pwrite
gfevt_r
rand

read
realloc
regexec
remque
rindex
seed48
setegid
setgid
setlocale
setstate
setvbuf
sigdelset
siglongjmp
sigsuspend
srand
ssignal
strcasecmp
strcoll
strerror
strftime
strncmp

strpbrk

S-2396-20

glibc Functions Supported in CNL [A]

strptime
strspn
strtok
strtoll
strtouq
swab
sysconf
tfind
timezone
toupper
truncate
tzname
uname
unsetenv
vdprintf
vfork
vprintf
vsscanf
vwprintf
wcpncpy
wceschr
wcesdup
wesnemp
wcespbrk
wesstr
wctob
wewidth
wmemmove

writev

strrchr
strstr
strtok r
strtoq
strverscmp
swprintf
tdelete
time
tmpfile
towctrans
tsearch
tzset
ungetc
usleep
verr
viprintf
vscanf
vswprintf
warn
wcrtomb
wcesemp
wecslen
wcesnepy
wecsrchr
wcstok
wctomb
wmemchr
wmemset

xdecrypt

strsep
strtod
strtol
strtoul
strxfrm
symlink
telldir
timegm
toascii
towlower
ttyslot
umask
ungetwc
utime
VErrx
vfscanf
vsnprintf
vwarn
warnx
wcscasecmp
WCSCpy
wcsncasecmp
wcshlen
wcsrtombs
westombs
wctrans
wmemcmp
wprintf

xencrypt

strsignal
strtof
strtold
strtoull
svcfd_create
syscall
textdomain
timelocal
tolower
towupper
twalk
umount
unlink
vasprintf
versionsort
viwprintf
vsprintf
vwarnx
wepcepy
wcscat
wcscspn
wcsncat
wceshrtombs
wesspn
weswidth
wctype
wmemcpy

write

S-2396-20

Cray XT™ Series Programming Environment User's Guide

186 S-2396-20

glibc Functions Supported in Catamount [B]

The Catamount port of glibc supports the functions listed in Table 10. For further
information, see the man pages.

Note: Some f cnt | () commands are not supported for applications that use
Lustre. The supported commands are:

- F_GETFL

F_SETFL

F_GETLK

F_SETLK

F_SETLKW64

F_SETLKW

F_SETLK64

The Cray XT series system supports two implementations of mal | oc() for
compute nodes running Catamount: Catamount mal | oc and GNU nal | oc.

If your code makes generous use of mal | oc(), al l oc(), real l oc(), or
automatic arrays, you may notice improvements in scaling by loading the GNU
mal | oc module and relinking.

To use GNU mal | oc, load the gnal | oc module;
% nodul e | oad gnal | oc

Entry pointsin | i bgmal | oc. a (GNU nal | oc) are referenced before those in
I'i bc. a (Catamount mal | oc).

Table 10. Supported glibc Functions for Catamount

a64l

addmntent
argz_add_sep
argz_create_sep
argz_next

S-2396-20

abort abs access
alarm alphasort argz_add
argz_append argz_count argz_create
argz_delete argz_extract argz_insert
argz_replace argz_stringify asctime

187

Cray XT™ Series Programming Environment User's Guide

asctime_r

atoi

bcmp

bsearch
catclose

chdir

clearerr

confstr

creat

daylight
dgettext

div

dup

ecvt

endttyent
envz_get
erand48
fchmod

fentl

fdopen
ferror_unlocked
ffsl

fgetgrent
fgets_unlocked
fgetws_unlocked
flockfile

fputc

fputwc

fread

frexp

188

asprintf

atol

bcopy

btowc

catgets

chmod
clearerr_unlocked
copysign

ctime

dcgettext
difftime
dngettext

dup?

ecvt_r
endusershell
envz_merge
err

fchown

fevt

feof

fflush

ffsll

fgetpos

fgetwc

fileno

fnmatch
fputc_unlocked
fputwc_unlocked
fread_unlocked
fscanf

atexit

atoll
bind_textdomain_codeset
bzero

catopen

chown

close

copysignf
ctime_r
dcngettext

dirfd

dprintf

dysize

endfsent
envz_add
envz_remove
errx

fclose

fevt r

feof _unlocked
fflush_unlocked
fgetc

fgetpwent
fgetwc_unlocked
fileno_unlocked
fopen

fputs

fputws

free

fseek

atof

basename
bindtextdomain
calloc
cbc_crypt
clearenv
closedir
copysignl
daemon
des_setparity
dirname
drand48
ecb_crypt
endmntent
envz_entry
envz_strip

exit

fcloseall
fdatasync
ferror

ffs
fgetc_unlocked
fgets

fgetws

finite

fprintf
fputs_unlocked
fputws_unlocked
freopen

fseeko

S-2396-20

glibc Functions Supported in Catamount [B]

fsetpos
ftello
ftrylockfile
fwrite

getc

getewd
getdirentries
geteuid
getgid
getlogin_r
getopt_long_only
getrlimit
getttyent
getw
getwchar_unlocked
hasmntopt
hsearch
imaxabs
ioctl

isblank

isinf

ispunct
iswalpha
iswdigit
iswpunct
isxdigit

labs

link
localtime_r

Isearch

S-2396-20

fstat

ftime
funlockfile
fwrite_unlocked
getc_unlocked
getdate
getdomainname
getfsent
gethostname
getmntent
getpagesize
getrusage
getttynam
getwc

gmtime
hcreate

iconv

index

isalnum

iscntrl

islower
isspace
iswblank
iswgraph
iswspace
jrand48
Icong48

llabs

lockf

Iseek

fsync

ftok

fwide
gevt
getchar
getdate r
getegid
getfsfile
getline
getopt
getpass
gettext
getuid
getwc_unlocked
gmtime_r
hcreate_r
iconv_close
initstate
isalpha
isdigit
isnan
isupper
iswentrl
iswlower
iswupper
kill

Idexp
localeconv
longjmp
Istat

ftell
ftruncate
fwprintf
get_current_dir_name
getchar_unlocked
getdelim
getenv
getfsspec
getlogin
getopt_long
getpid
gettimeofday
getusershell
getwchar
gsignal
hdestroy
iconv_open
insque

isascii
isgraph
isprint
iswalnum
iswctype
iswprint
iswxdigit
164a

Ifind
localtime
Irand48

malloc

189

Cray XT™ Series Programming Environment User's Guide

mblen
mbsnrtowcs
memccpy
memfrob
memset
mkstemp
modfl
nl_langinfo
opendir
pread
putc_unlocked
putpwent
putwc_unlocked
gecvt

ggcvt
random
readdir
realpath
regfree
rename
rmdir
seekdir
setenv
setitimer
setlogmask
setttyent
sigaction

sigemptyset

1 see Section 4.3.5, page 36.

190

mbrlen
mbsrtowcs
memchr
memmem
mkdir
mktime
mrand48
nrand48
passwd2des
printf
putchar
puts
putwchar
gecvt_r
gsort
re_comp
readlink
regcomp
registerrpc
rewind
scandir
setbuf
seteuid
setimp
setmntent
setuid
sigactionl

sigfillset

mbrtowc
mbstowcs
memcmp
memmove
mkdtemp
modf
nanosleep
on_exit
pclose
psignal
putchar_unlocked
putw
putwchar_unlocked
gfcvt

raise
re_exec
readv
regerror
remove
rewinddir
scanf
setbuffer
setfsent
setlinebuf
setrlimit
setusershell
sigaddset

sigismember

mbsinit
mbtowc
memcpy
memrchr
mknod
modff
ngettext
open
perror
putc
putenv
putwc
pwrite
gfevt_r
rand
read
realloc
regexec
remque
rindex
seed48
setegid
setgid
setlocale
setstate
setvbuf
sigdelset
siglongjmp

S-2396-20

glibc Functions Supported in Catamount [B]

signal sigpending sigprocmask sigsuspend
sleep snprintf sprintf srand
srand48 srandom sscanf ssignal

stat stpcpy stpncpy strcasecmp
strcat strchr strcmp strcoll
strepy strespn strdup strerror
strerror_r strfmon strfry strftime
strlen strncasecmp strncat strncmp
strncpy strndup strnlen strpbrk
strptime strrchr strsep strsignal
strspn strstr strtod strtof
strtok strtok r strtol strtold
strtoll strtoq strtoul strtoull
strtouq strverscmp strxfrm svcfd_create
swab swprintf symlink syscall
sysconf tdelete telldir textdomain
tfind time timegm timelocal
timezone tmpfile toascii tolower
toupper towctrans towlower towupper
truncate tsearch ttyslot twalk
tzname tzset umask umount
uname ungetc ungetwec unlink
unsetenv usleep utime vasprintf
vdprintf verr verrx versionsort
vfork viprintf vfscanf viwprintf
vprintf vscanf vsnprintf vsprintf
vsscanf vswprintf vwarn vwarnx
vwprintf warn warnx wcepcpy
wcpncpy wcrtomb wcscasecmp wescat
weschr wescmp wescpy wcscspn

S-2396-20 191

Cray XT™ Series Programming Environment User's Guide

wcesdup
wesnemp
wcespbrk
wesstr
wctob
wcwidth
wmemmove

writev

wecslen
wcesnepy
wecsrchr
wcstok
wctomb
wmemchr
wmemset

xdecrypt

wcsncasecmp
wecsnlen
wcsrtombs
wcstombs
wctrans
wmemcmp
wprintf

xencrypt

wcsncat
wceshrtombs
wesspn
weswidth
wctype
wmemcpy

write

192

S-2396-20

PAPI| Hardware Counter Presets [C]

S-2396-20

The following table describes the hardware counter presets that are available
on the Cray XT series system. Use these presets to construct an event set as
described in Section 11.1.2, page 84.

Table 11. PAPI Presets

Supported Derived

on from
Cray XT multiple

Name series counters? Description

PAPI L1 DCM Yes No Level 1 data cache misses

PAPI L1 ICM Yes No Level 1 instruction cache misses

PAPI L2 DCM Yes No Level 2 data cache misses

PAPI L2 I CM Yes No Level 2 instruction cache misses

PAPI L3 DCM No No Level 3 data cache misses

PAPI L3 I CM No No Level 3 instruction cache misses

PAPI L1 TCM Yes Yes Level 1 cache misses

PAPI L2 TCM Yes No Level 2 cache misses

PAPI L3 TCM No No Level 3 cache misses

PAPI _CA SNP No No Requests for a snoop

PAPI _CA SHR No No Requests for exclusive access to
shared cache line

PAPI _CA CLN No No Requests for exclusive access to
clean cache line

PAPI _CA I NV No No Requests for cache line
invalidation

PAPI _CA 1TV No No Requests for cache line
intervention

PAPI L3 LDM No No Level 3 load misses

PAPI L3 _STM No No Level 3 store misses

PAPI BRU | DL No No Cycles branch units are idle

193

Cray XT™ Series Programming Environment User's Guide

194

Supported Derived

on from
Cray XT multiple

Name series counters? Description

PAPI _FXU_I DL No No Cycles integer units are idle

PAPI _FPU_I DL No No Cycles floating-point units are idle

PAPI _LSU | DL No No Cycles load/store units are idle

PAPI _TLB_DM Yes No Data translation lookaside buffer
misses

PAPI _TLB IM Yes No Instruction translation lookaside
buffer misses

PAPI _TLB TL Yes Yes Total translation lookaside buffer
misses

PAPI L1 LDM Yes No Level 1 load misses

PAPI L1 STM Yes No Level 1 store misses

PAPI L2 LDM Yes No Level 2 load misses

PAPI L2 STM Yes No Level 2 store misses

PAPI _BTAC M No No Branch target address cache
misses

PAPI _PRF_DM No No Data prefetch cache misses

PAPI L3 DCH No No Level 3 data cache hits

PAPI _TLB SD No No Translation lookaside buffer
shootdowns

PAPI CSR FAL No No Failed store conditional
instructions

PAPI _CSR_SUC No No Successful store conditional
instructions

PAPI _CSR TOT No No Total store conditional
instructions

PAPI _MEM SCY Yes No Cycles Stalled Waiting for
memory accesses

PAPI _NMEM RCY No No Cycles Stalled Waiting for

memory reads

S-2396-20

PAPI Hardware Counter Presets [C]

S-2396-20

Supported Derived

on from
Cray XT multiple

Name series counters? Description

PAPI _MVEM VWY No No Cycles Stalled Waiting for
memory writes

PAPI _STL_I CY Yes No Cycles with no instruction issue

PAPI _FUL_I CY No No Cycles with maximum instruction
issue

PAPI _STL_CCY No No Cycles with no instructions
completed

PAPI _FUL_CCY No No Cycles with maximum
instructions completed

PAPI _HW I NT Yes No Hardware interrupts

PAPI _BR_UCN Yes No Unconditional branch instructions

PAPI _BR CN Yes No Conditional branch instructions

PAPI _BR TKN Yes No Conditional branch instructions
taken

PAPI _BR NTK Yes Yes Conditional branch instructions
not taken

PAPI _BR_MsSP Yes No Conditional branch instructions
mispredicted

PAPI _BR PRC Yes Yes Conditional branch instructions
correctly predicted

PAPI _FMA | NS No No FMA instructions completed

PAPI TOT IIS No No Instructions issued

PAPI _TOT_I NS Yes No Instructions completed

PAPI I NT_I NS No No Integer instructions

PAPI _FP_I NS Yes No Floating-point instructions

PAPI LD I NS No No Load instructions

PAPI _SR I NS No No Store instructions

PAPI _BR I NS Yes No Branch instructions

PAPI _VEC | NS Yes No Vector/SIMD instructions

195

Cray XT™ Series Programming Environment User's Guide

196

Supported Derived

on from
Cray XT multiple

Name series counters? Description

PAPI _FLOPS Yes Yes Floating-point instructions per
second

PAPI _RES_STL Yes No Cycles stalled on any resource

PAPI _FP_STAL Yes No Cycles in the floating-point unit(s)
are stalled

PAPI _TOT_CYC Yes No Total cycles

PAPI _I PS Yes Yes Instructions per second

PAPI _LST INS No No Load/store instructions
completed

PAPI _SYC I NS No No Synchronization instructions
completed

PAPI L1 DCH Yes Yes Level 1 data cache hits

PAPI L2 DCH Yes No Level 2 data cache hits

PAPI L1 DCA Yes No Level 1 data cache accesses

PAPI L2 DCA Yes No Level 2 data cache accesses

PAPI _L3_DCA No No Level 3 data cache accesses

PAPI L1 DCR No No Level 1 data cache reads

PAPI L2 DCR Yes No Level 2 data cache reads

PAPI L3 _DCR No No Level 3 data cache reads

PAPI L1 DCW No No Level 1 data cache writes

PAPI _L2_DCW Yes No Level 2 data cache writes

PAPI L3 _DCW No No Level 3 data cache writes

PAPI L1 ICH No No Level 1 instruction cache hits

PAPI L2 ICH No No Level 2 instruction cache hits

PAPI L3 ICH No No Level 3 instruction cache hits

PAPI L1 ICA Yes No Level 1 instruction cache accesses

PAPI L2 I CA Yes No Level 2 instruction cache accesses

PAPI L3 I CA No No Level 3 instruction cache accesses

S-2396-20

PAPI Hardware Counter Presets [C]

Supported Derived

on from
Cray XT multiple

Name series counters? Description

PAPI L1 ICR Yes No Level 1 instruction cache reads

PAPI L2 ICR No No Level 2 instruction cache reads

PAPI L3 ICR No No Level 3 instruction cache reads

PAPI _L1_ICW No No Level 1 instruction cache writes

PAPI L2 I CW No No Level 2 instruction cache writes

PAPI L3 I CW No No Level 3 instruction cache writes

PAPI L1 TCH No No Level 1 total cache hits

PAPI L2 TCH No No Level 2 total cache hits

PAPI L3 TCH No No Level 3 total cache hits

PAPI L1 TCA Yes Yes Level 1 total cache accesses

PAPI L2 TCA No No Level 2 total cache accesses

PAPI L3 TCA No No Level 3 total cache accesses

PAPI L1 TCR No No Level 1 total cache reads

PAPI L2 TCR No No Level 2 total cache reads

PAPI L3 TCR No No Level 3 total cache reads

PAPI L1 TCW No No Level 1 total cache writes

PAPI L2 TCW No No Level 2 total cache writes

PAPI L3 _TCW No No Level 3 total cache writes

PAPI _FM__I NS Yes No Floating-point multiply
instructions

PAPI _FAD_| NS Yes No Floating-point add instructions

PAPI _FDV_I NS No No Floating-point divide instructions

PAPI _FSQ I NS No No Floating-point square root
instructions

PAPI _FNV_I NS Yes Yes Floating-point inverse

instructions. This event is
available only if you compile with
the -DDEBUG flag.

S-2396-20 197

Cray XT™ Series Programming Environment User's Guide

198 S-2396-20

MPI Error Messages [D]

Table 12 lists the MPI error messages you may encounter and suggested

workarounds.

Table 12. MPI Error Messages

Message

Description

Workaround

Segnmentation fault in
MPID I nit()

MPI DI _Portal sU Request PUPE(323):

exhaust ed unexpected

recei ve queue buffering
i ncrease via env. var.
MPI CH_UNEX_BUFFER_SI ZE

S-2396-20

The application is using all
the memory on the node and
not leaving enough for MPI's
internal data structures and
buffers.

The application is sending
too many short, unexpected
messages to a particular
receiver.

Reduce the amount of
memory used for MPI
buffering by setting the
environment variable

MPI CH_UNEX_ BUFFER_SI ZE
to something greater than 60
MB. If the application uses
scalable data distribution,
run at higher process counts.

Increase the amount

of memory for MPI
buffering using the

MPI CH_UNEX_ BUFFER_SI ZE
environment variable or
decrease the short message
threshold using the

MPI CH_MAX_SHORT_MSG_SI ZE
variable (default is 128

KB). The default for

MPI CH_UNEX_BUFFER_SI ZE
is 60,000,000 bytes. The

MPI CH_UNEX_BUFFER_SI ZE
environment variable
specifies the entire amount

of buffer space for short
unexpected messages.

199

Cray XT™ Series Programming Environment User's Guide

Message

Description

Workaround

pe_rank MPI DI _Portal s_Progress:

dropped event on

unexpect ed recei ve queue,
i ncrease pe rank queue Size by
setting the environment variable

MPI CH_PTL_UNEX_EVENTS

pe rank MPI DI _Portal s_Progress:
dropped event on "ot her"

queue, i ncrease pe rank
gqueue size by setting

the environnent variabl e

MPl CH_PTL_OTHER EVENTS

You have used up all the
space allocated for event
gueue entries associated with
the unexpected messages
gueue. The default size is
20,480 bytes.

You have used up all the
space allocated for the event
gueue entries associated with
the "other" queue. This can
happen if the application is
posting many non-blocking
sends of large messages, or
many MPI-2 RMA operations
are posted in a single epoch.
The default size is 2048 bytes.

You can increase the size of
the unexpected messages
event queue by setting

the environment variable
MPI CH_PTL_UNEX_EVENTS
to a value higher than 20,480
bytes.

You can increase the size

of the queue by setting

the environment variable

MPI CH_PTL_OTHER EVENTS
to a value higher than

2048 bytes.

200

S-2396-20

ALPS Error Messages [E]

This appendix documents common ALPS error messages. It is possible for you
to see many more messages than those documented here. Other messages are
generated only if a system error occurs. For all ALPS messages not described
here, see your system administrator.

These messages are generated by the placement scheduler during application
placement and are forwarded to the user through apr un.

Messages that begin with [NID nnn] come from the application shepherds on the
compute nodes and are prefixed with a node ID (NID) to indicate which compute
node sent the message. When general application failures occur, typically only
one message appears from an arbitrary NID assigned to the application. This is
done to prevent flooding the user with possibly thousands of identical messages
if the application fails globally.

Table 13. ALPS Error Messages

Error

Description

no XT nodes are configured up

menory request exceeds 1048575
megabyt es

Request exceeds nax

[CPUs | nenmory | nodes]

In user NI Ds request exceeds
max [CPUs | menory | nodes]

At | east one conmand's user
list is short

NI D

nid NNN appears nore than once
inuser's nid |ist

[Nl D nnn] Apid NNNN /proc
readdir tinmeout al arm occurred.
Appl i cation aborted.

S-2396-20

A request for the named type of compute node cannot be
satisfied because there are no nodes of that type currently
available.

The apr un - mvalue exceeds the indicated amount. This is
probably a mistake in units by the user because the value far
exceeds any compute node memory size possible to install.

The allocation request requires more of the named resource
than the configuration can deliver at this time. The second
message will appear instead of the first if the user has
specified the NIDs using the apr un - L option.

If the apr un - L option is used, the NID list must have at least
as many NID values as the number of nodes the application
requires.

The user has specified an NID list, but the list has at least one
duplicate NID.

A problem on the node prevented the shepherd responsible
for the application to read information from / pr oc as it must.
Report this to the system administrator.

201

Cray XT™ Series Programming Environment User's Guide

Error

Description

[Nl D nnn] Apid NNNN:. cannot
execute: reason

[NID nnn] Apid NnNN kil l ed.
Recei ved node fail ed or
unavail abl e event for nid
nnn

aprun: Exiting due to errors.
Launch aborted

aprun: Apid NNNN cl ose of the
conput e node connection [before
| after] app startup barrier

aprun: Application NNNN exit
codes: one to four values

aprun: Application NNNN exit
signals: one to four values

aprun: Applicati on NNNN
resources: utinme uuu, Stine
SSs

A large number of reasons can appear, but the most likely
isexec fail ed, which usually means the a. out file is
corrupted or is the wrong instruction set to run on this
compute node.

The system monitoring software has detected an
unrecoverable error on the named NID. Notification has been
delivered to this NID for handling. The application must be
killed because one or more of the compute nodes on which it
is running have failed.

Typically, this is the final message from apr un before it
terminates when an error has been detected. More detailed
messages should precede this one.

The compute node to which apr un is connected has dropped
its socket connection to apr un without warning. This usually
means the application or a compute node has failed in some
way that prevents normal error messages from being created
or delivered to apr un.

If an application terminates with nonzero exit codes or has
internally generated a signal (such as a memory address
error), the first four of the values detected are reported with
these messages. Both messages will appear if both nonzero
exit codes and signals have occurred in the application.

When the application terminates the accumulated user time
(ut i me) and system time (st i me) are forwarded to apr un
and reported with this message.

202

S-2396-20

yod Error Messages [F]

Table 14 describes yod error messages.

Table 14. yod Error Messages

Error Number Description

ERR_NO_MEMCORY 1 Out of memory in yod.

ERR_USAGE 2 Command-line usage error.

ERR HOST INIT 3 Errorin host _cnd_i nit due to out of memory or
portals. yod internal initialization failed.

ERR_MESH ALLOC 8 Call to nesh_al | oc failed. Error during mesh
initialization.

ERR LOAD 9 Load error. Cannot load program.

ERR_ABORT 10 User aborted yod. yod was aborted during load
of program.

LD ERR SEND 10 Error while sending data to children in fan-out tree.

LD _ERR _NO_HEAP 10 Error allocating heap memory on node.

LD _ERR TARCET_LENGTH 10 Target supplied location too small for message to
be sent.

ERR LQAD FI LE 13 Load-file error. Error in use of heterogeneous load
file.

ERR_YOD_USAGE 14 General yod usage error.

ERR_KI LL 23 Application was killed. yod got killed after load.

ERR_TARCGET 26 Invalid target option; valid targets are | i nux and
cat anount .

ERR TIME LIMT 27 yod time limit expired.

ERR_PREMATURE EXI T 28 yod received CVMD_EXI T too soon. A process exited
prematurely.

ERR_ALARM 29 Load time-out. Alarm signal.

ERR_RCA 30 RCA register failed.

LD _ERR_ABORTED 100 Aborted load.

S-2396-20

203

Cray XT™ Series Programming Environment User's Guide

Error Number Description

LD ERR START 100 First load error.

LD _ERR_NUWMNODES 101 Number of nodes was outside of range allowed.

LD ERR | NTERNAL 102 Internal error.

PCT LD_ERR_CONTROL_PORTAL 103 Error on control portal.

LD _ERR TARCET_RANK 105 Rank of requesting node is out of expected range.

LD ERR TARCET_PORTAL 106 Target portal number is out of expected range.

LD ERR PULL 108 Error while pulling data from parent in fan-out
tree.

LD ERR VERSI ON 110 Version mismatch.

LD ERR NODE_TI MEQUT 111 Time-out while communicating with node.

LD ERR PORTALS Ul D 112 Portals UID mismatch.

LD ERR PROTOCOL_ERRCR 113 General load-protocol error.

LD ERR BAD PCT_MSG TYPE 114 Unexpected message type.

LD ERR EXEC LQAD 115 Error loading executable file.

LD ERR WRONG NI D 116 Received response from wrong node ID.

LD ERR VWRONG RECV_LENGTH 117 Received load with wrong length.

LD ERR PCT_EXI T 118 PCT exited during load.

LD ERR NI DPI D 119 Node ID map was built or distributed incorrectly.

ERROR_PCT_FAULT 120 PCT fault.

ERROR_SET_CACHE 121 PCT failed to initialize processor.

ERROR_|I NI T_REG ON 122 PCT failed to initialize memory region.

ERROR_APP_TI MER 123 Application Timer Error.

ERROR_NO_MEM 124 Out of memory on node.

ERROR_NO_MEM FOR_BSS 125 Text size is too big.

ERROR_NO_MEM FOR_HEAP 126 Not enough memory for heap on node.

ERROR_NO_MEM FOR_PROCESS 127 Not enough memory for process.

ERROR_HEAP_SI ZE_ TOO _SMALL 128 Heap size is too small on node.

ERROR_NO_SwWP 129 Catamount virtual node mode is unavailable.

ERROR_VA_OVERLAP 130 Virtual addresses overlap kernel/PCT addresses.

204

S-2396-20

yod Error Messages [F]

Error Number Description

ERROR PRI ORI TY 131 PCT could not set processor priority.
ERROR _PORTALS 132 Portals Error.

ERROR BAD ELF_FI LE 133 Bad ELF file.

ERROR_ELF_DYNAM C_LQOAD 134 No dynamic load support for ELF files.
ERROR _ELF_GENERI C 135 ELF file error.

ERROR | NVALI D_TARGET 136 Invalid target.
ERROR_MSG_RCV_CACHE OVERFLOW 137 Overflow in message received cache.
ERROR_TOO_MANY_PARANMS 138 Too many parameters passed to application
ERROR_TOO _NMANY_PORTALS 139 Too many portals were allocated.
ERROR_TOO MANY_PRCCS 140 Too many processes.

S-2396-20

205

Cray XT™ Series Programming Environment User's Guide

206 S-2396-20

Glossary

S-2396-20

Catamount

The operating system kernel developed by Sandia National Laboratories and
implemented to run on Cray XT series compute nodes. See also compute node.

Catamount Virtual Node (CVN)

The Catamount kernel enhanced to run on dual-core Cray XT series compute
nodes.

CNL

CNL is a Cray XT series compute node operating system. CNL provides a set of
supported system calls. CNL provides many of the operating system functions
available through the service nodes, although some functionality has been
removed to improve performance and reduce memory usage by the system.

compute node

Runs a kernel and performs only computation. System services cannot run on
compute nodes. See also node; service node.

compute processor allocator (CPA)
A program that coordinates with yod to allocate processing elements.

CrayDoc

Cray's documentation system for accessing and searching Cray books, man
pages, and glossary terms from a web browser.

deferred implementation

The label used to introduce information about a feature that will not be
implemented until a later release.

dual-core processor

A processor that combines two independent execution engines ("cores"), each
with its own cache and cache controller, on a single chip.

207

Cray XT™ Series Programming Environment User's Guide

208

login node

The service node that provides a user interface and services for compiling and
running applications.

Modules

A package on a Cray system that allows you to dynamically modify your user
environment by using module files. (This term is not related to the module
statement of the Fortran language; it is related to setting up the Cray system
environment.) The user interface to this package is the nodul e command, which
provides a number of capabilities to the user, including loading a module file,
unloading a module file, listing which module files are loaded, determining
which module files are available, and others.

node

For UNICOS/Ic systems, the logical group of processor(s), memory, and network
components acting as a hetwork end point on the system interconnection
network.

node ID

A decimal number used to reference each individual node. The node ID (NID)
can be mapped to a physical location.

service node

A node that performs support functions for applications and system services.
Service nodes run SUSE LINUX and perform specialized functions. There are six
types of predefined service nodes: login, 10, network, boot, database, and syslog.

system interconnection network
The high-speed network that handles all node-to-node data transfers.

UNICOS/Ic
The operating system for Cray XT series systems.

S-2396-20

Index

64-bit library
PathScale, 25
PGI, 23

A

Accounts, 65
ACML, 2,16

required PGI linking option, 41
AMD Core Math Library, 16
APls, 13
Applications

launching, 53, 59

running in parallel, 95, 133
aprun

/0 handling, 58

launching applications, 53
apr un command, 3,53
Authentication, 7-8

B

Batch job
submitting through PBS Pro, 67
using a script to create, 110, 151
Batch processing, 3
BLACS, 2,13-14
BLAS, 2,13,16
Buffering
Fortran 1/0, 32

C
C compiler, 1
C++ compiler, 1
C++1/0
changing default buffer size, 32
specifying a buffer, 32
Catamount
C run time functions in, 187
C++1/0, 32

S-2396-20

glibc functions supported, 30, 187
170, 31

I/0 handling, 64

programming considerations, 30
signal handling, 64

stderr, 31
stdin, 31
stdout, 31

Catamount nodes

report showing status, 47
Catamount Virtual Node (CVN), 60
CNL, 1,53

C run time functions in, 181

glibc functions supported, 181

170, 27

I/0 handling, 58

programming considerations, 23, 26

signal handling, 58

stderr, 27
stdin, 27
stdout, 27

CNL applications

requesting resources, 53
CNL nodes

report showing status, 47
cnsel ect command, 3
Compiler

C, 1

C++, 1

Fortran, 1
Complier commands, 39
Compute node kernel

report showing status, 47
Compute node operating system

Catamount, 1

CNL, 1
Compute nodes

managing from an MPI program, 57, 64, 69

209

Cray XT™ Series Programming Environment User's Guide

selecting, 3 using OpenMP, 22
Compute Processor Allocator (CPA), 59 GCC compilers, 1,39, 42
Core files, 36 gdb debugger
Cray Apprentice2, 3,88 See GNU debugger
Cray MPICH2, 1,18 get pagesi ze()

limitations, 18 Catamount implementation of, 30
Cray SHMEM, 20 glibc, 2,13

atomic memory operations, 20 Catamount, 30
Cray XT-LibSci, 2,13 run time functions implemented in
CrayPat, 3,84 Catamount, 187

run time functions implemented in CNL, 181

D support in Catamount, 30
Debugging, 73 support in CNL, 26

gdb GNU C library, 2,13

See xt gdb GNU compilers, 39, 42

GNU debugger, 81 GNU debugger, 81

using TotalView, 74 GNU Fortran libraries, 2
Dual-core processor, 60

CNL jobs, 53 H
Dynamic linking, 26 Hardware counter presets

PAPI, 193
E Hardware performance counters, 84
Endian
See Little endian I

Event set 170

how to create in PAPI, 84 stdio performance, 33
Example programs stride functions, 34

Catamount, 133 1/0 buffering

CNL, 95 IOBUF library, 33
Examples 1/0 performance

combining results with MPI, 100, 137 Fortran buffer size, 32

1/0 support in Catamount, 31

F 1/0 support in CNL, 27
FFT, 2,16-17 Instrumenting a program, 84
FFTW, 2,17 IRT
File system See Iterative Refinement Toolkit

Lustre, 3,11 IRT (Iterative Refinement Toolkit), 2
Fortran compiler, 1 Iterative Refinement Toolkit, 13
Fortran STOP message, 24 Iterative Refinement Toolkit (IRT), 15
G J
GCC Job accounting, 65

210 S-2396-20

Index

Job launch
MPMD application, 57
Job scripts, 67
Job status, 70
Jobs
running on Catamount, 59
running on CNL, 53

L

LAPACK, 2,13,16
Launching Catamount applications, 59
Launching CNL applications, 53
Launching jobs

using aprun, 3

usingyod, 3
LD PRELQAD environment variable, 26
Libraries, 13
Library

ACML, 2,16

BLACS, 2,13-14

BLAS, 2,13,16

Cray MPICH2, 18

Cray XT-LibSci, 13

FFT, 2,16

FFTW, 2

glibc, 13

GNUC, 2

IRT (Iterative Refinement Toolkit), 2

Iterative Refinement Toolkit, 15

LAPACK, 2,13,16

LibSci, 2

ScaLAPACK, 2,13-14

SuperLU, 2,13, 16
LibSci

See Cray XT-LibSci

Little endian, 26
Loadfile

launching MPMD applications with, 62
Lustre, 3

programming considerations, 11
Lustre library, 11

S-2396-20

M

mal | oc(), 31
Catamount implementation of, 30
Math transcendental library routines, 2, 17
Message passing, 18
Message Passing Interface, 1
nmodul e command, 10
Modules, 9
MPI, 1,18
64-bit library, 23, 25
managing compute nodes from, 57, 64, 69
running program interactively, 95, 133
running program under PBS Pro, 108, 149
MPICH?2
limitations, 18
MPMD applications
using aprun, 57

using yod, 62
N

Node
availability, 47
O

OpenMP, 2, 22
Optimization, 91

P

PAPI, 83
counter presets for constructing an event
set, 193
high-level interface, 83
low-level interface, 84
PAPI library, 84
Parallel programming model

MPICH2, 1
OpenMP, 2
SHMEM, 2

passwordless logins, 7
passwordless ssh, 7
passwords, 7

211

Cray XT™ Series Programming Environment User's Guide

PATH variable

how to modify, 11
PathScale

using OpenMP, 22
PathScale compilers, 1,43
PBS Pro, 3,67
Performance analysis

Cray Apprentice2, 88

CrayPat, 84

PAPI, 83
Performance API (PAPI), 2
PGI

using OpenMP, 22
PGI compilers, 1, 39-40

limitations, 23
Portals interface, 18
Process Control Thread (PCT), 59
Programming considerations

Catamount, 23

CNL, 23

general, 23
Programming Environment, 1
Project accounting, 65

Q

gdel command, 71
gst at command, 70
gsub command, 68

R

Random number generators, 2,17
Reports

CrayPat, 84
RSA authentication, 7

with passphrase, 8

without passphrase, 9
Running applications

using aprun, 3

usingyod, 3
Running Catamount applications, 59
Running CNL applications, 53

212

S

ScaLAPACK, 2,13-14
Scientific libraries, 13
Script
creating and running a batch job with,
Scripts
creating and running a batch job with,
PBS Pro, 67
Secure shell, 7
Shared libraries, 26
SHMEM, 2
64-bit library, 23, 25
Signal handling, 36, 58, 64
Single-core processor, 59

CNL jobs, 53
ssh, 7
stderr, 27,31
stdin, 27,31
stdio

performance, 33
stdout, 27,31
STOP message, 24
SuperLU, 2,13, 16

T
Timers

Catamount support for, 30
Timing measurements, 35
TotalView, 73-74

Cray specific functions, 81

U

UNICOS/Ic
Catamount, 1
CNL, 1

User environment
setting up, 7

X

xt gdb debugger
See GNU debugger
Xt procadm n, 47

151

110

S-2396-20

Index

xt showcabs, 47 Y

xtshowcabs command, 3 yod, 59

xt shownesh, 47 170 handling, 64
xtshowmesh command, 3 yod command, 3

S-2396-20 213

	Cray XT™ Series Programming Environment User's Guide
	New Features
	Preface
	Accessing Product Documentation
	Conventions
	Reader Comments
	Cray User Group

	Introduction [1]
	1.1 The Cray XT Series System Environment
	1.2 The Cray XT Series Programming Environment
	1.3 Documentation Included with This Release

	Setting Up the User Environment [2]
	2.1 Setting Up a Secure Shell
	2.1.1 RSA Authentication with a Passphrase
	2.1.2 RSA Authentication without a Passphrase

	2.2 Using Modules
	2.3 Modifying the PATH Variable
	2.4 Lustre File System

	Libraries and APIs [3]
	3.1 C Language Run Time Library
	3.2 Cray Scientific Library
	3.2.1 BLAS and LAPACK
	3.2.2 ScaLAPACK and BLACS
	3.2.3 Iterative Refinement Toolkit
	3.2.4 SuperLU

	3.3 AMD Core Math Library
	3.4 FFTW Libraries
	3.5 PETSc Library
	3.6 Cray MPICH2 Message Passing Library
	3.7 Cray SHMEM Library
	3.8 OpenMP Library

	Programming Considerations [4]
	4.1 General Programming Considerations
	4.1.1 PGI Compilers
	4.1.1.1 Default MPICH2 and SHMEM Libraries
	4.1.1.2 Unsupported C++ Header Files
	4.1.1.3 Restrictions on Large Data Objects
	4.1.1.4 The FORTRAN STOP Message
	4.1.1.5 Unsupported Compiler Command Options
	4.1.1.6 Suppressing Vectorization

	4.1.2 PGI Debugger
	4.1.3 PathScale Fortran Compiler
	4.1.4 Little-endian Support
	4.1.5 Portals Message Size Limit
	4.1.6 Shared Libraries

	4.2 CNL Programming Considerations
	4.2.1 CNL glibc Functions
	4.2.2 I/O Support
	4.2.3 External Connectivity
	4.2.4 Timing Functions
	4.2.5 Signal Support
	4.2.6 Core Files
	4.2.7 Page Size
	4.2.8 Resource Limits
	4.2.9 One Application Per Node Limitation
	4.2.10 Parallel Programming Models
	4.2.11 Modified Copy-on-write Process

	4.3 Catamount Programming Considerations
	4.3.1 Catamount glibc Functions
	4.3.2 I/O Support
	4.3.2.1 Improving Fortran I/O Performance
	4.3.2.2 Improving C++ I/O Performance
	4.3.2.3 Improving stdio Performance
	4.3.2.4 Improving Large File, Sequential I/O Performance
	4.3.2.5 Using Stride I/O Functions to Improve Performance
	4.3.2.6 Reducing Memory Fragmentation

	4.3.3 External Connectivity
	4.3.4 Timing Functions
	4.3.5 Signal Support
	4.3.6 Core Files
	4.3.7 Page Size
	4.3.8 Resource Limits
	4.3.9 Parallel Programming Models

	Compiler Overview [5]
	5.1 Setting Your Target Architecture
	5.2 Using Compilers
	5.2.1 Using PGI Compilers
	5.2.2 Using GNU Compilers
	5.2.3 Using PathScale Compilers

	Getting Compute Node Status [6]
	Running CNL Applications [7]
	7.1 aprun Command
	7.2 apstat Command
	7.3 cnselect Command
	7.4 Memory Available to CNL Applications
	7.5 Launching an MPMD Application
	7.6 Managing Compute Node Processors from an MPI Program
	7.7 Input and Output Modes under aprun
	7.8 Signal Handling under aprun

	Running Catamount Applications [8]
	8.1 yod Command
	8.2 cnselect Command
	8.3 Memory Available to Catamount Applications
	8.4 Launching an MPMD Application
	8.5 Managing Compute Node Processors from an MPI Program
	8.6 Input and Out Modes under yod
	8.7 Signal Handling under yod
	8.8 Associating a Project or Task with a Job Launch

	Using PBS Pro [9]
	9.1 Creating Job Scripts
	9.2 Submitting Batch Jobs
	9.2.1 Using aprun with qsub
	9.2.2 Using yod with qsub

	9.3 Terminating Failing Processes in an MPI Program
	9.4 Getting Jobs Status
	9.5 Removing a Job from the Queue

	Debugging an Application [10]
	10.1 Troubleshooting Catamount Application Failures
	10.2 Using the TotalView Debugger
	10.2.1 Debugging an Application
	10.2.2 Debugging a Core File
	10.2.3 Attaching to a Running Process
	10.2.4 Altering Standard I/O
	10.2.5 TotalView Limitations for Cray XT Series Systems

	10.3 Using the GNU gdb Debugger

	Performance Analysis [11]
	11.1 Using the Performance API
	11.1.1 Using the High-level PAPI Interface
	11.1.2 Using the Low-level PAPI Interface

	11.2 Using the Cray Performance Analysis Tool
	11.2.1 Tracing and Sampling Experiments

	11.3 Using Cray Apprentice2

	Optimization [12]
	12.1 Using Compiler Optimization Options
	12.2 Optimizing Applications Running on Dual-core Processors
	12.2.1 MPI and SHMEM Applications Running under Catamount
	12.2.2 MPI and SHMEM Applications Running under CNL

	Example CNL Applications [13]
	Example Catamount Applications [14]
	glibc Functions Supported in CNL [A]
	glibc Functions Supported in Catamount [B]
	PAPI Hardware Counter Presets [C]
	MPI Error Messages [D]
	ALPS Error Messages [E]
	yod Error Messages [F]
	Glossary
	Index
	List of Tables
	Table 1. Manuals and Man Pages Included with This Release
	Table 2. setvbuf3f() Arguments
	Table 3. PGI Compiler Commands
	Table 4. GNU Compiler Commands
	Table 5. PathScale Compiler Commands
	Table 6. aprun versus qsub Options
	Table 7. yod versus qsub Options
	Table 8. RPCs to yod
	Table 9. Supported glibc Functions for CNL
	Table 10. Supported glibc Functions for Catamount
	Table 11. PAPI Presets
	Table 12. MPI Error Messages
	Table 13. ALPS Error Messages
	Table 14. yod Error Messages

	List of Examples
	Example 1: Running a ScaLAPACK application
	Example 2: Running an ScaLAPACK hybrid application
	Example 3: Basics of running a CNL application
	Example 4: Basics of running an MPI application
	Example 5: Running an MPI work distribution program
	Example 6: Combining results from all processors using MPI
	Example 7: Using the Cray shmem_put function
	Example 8: Using the Cray shmem_get function
	Example 9: Turning off the PGI FORTRAN STOP message
	Example 10: Running an MPI/OpenMP program
	Example 11: Using a PBS Pro job script
	Example 12: Running an MPI program under PBS Pro
	Example 13: Running an MPI_REDUCE program under PBS Pro
	Example 14: Using a script to create and run a batch job
	Example 15: Running multiple sequential applications
	Example 16: Running multiple parallel applications
	Example 17: Using the high-level PAPI interface
	Example 18: Using the low-level PAPI interface
	Example 19: Using basic CrayPat functions
	Example 20: Using hardware performance counters
	Example 21: Basics of running a Catamount application
	Example 22: Basics of running an MPI application
	Example 23: Running an MPI work distribution program
	Example 24: Combining results from all processors using MPI
	Example 25: Using the Cray shmem_put function
	Example 26: Using the Cray shmem_get function
	Example 27: Turning off the PGI FORTRAN STOP message
	Example 28: Using dclock() to calculate elapsed time
	Example 29: Specifying a buffer for I/O
	Example 30: Changing default buffer size for I/O to file streams
	Example 31: Improving performance of stdout
	Example 32: Using a PBS Pro job script
	Example 33: Running an MPI program under PBS Pro
	Example 34: Running an MPI_REDUCE program under PBS Pro
	Example 35: Using a script to create and run a batch job
	Example 36: Running multiple sequential applications
	Example 37: Running multiple parallel applications
	Example 38: Using xtgdb to debug a program
	Example 39: Using the high-level PAPI interface
	Example 40: Using the low-level PAPI interface
	Example 41: Using basic CrayPat functions
	Example 42: Using hardware performance counters

